This review is focused on molecular momentum transport at fluid-solid interfaces mainly related to microfluidics and nanofluidics in micro-/nano-electro-mechanical systems (MEMS/NEMS). This broad subject covers molecular dynamics behaviors, boundary conditions, molecular momentum accommodations, theoretical and phenomenological models in terms of gas-solid and liquid-solid interfaces affected by various physical factors, such as fluid and solid species, surface roughness, surface patterns, wettability, temperature, pressure, fluid viscosity and polarity. This review offers an overview of the major achievements, including experiments, theories and molecular dynamics simulations, in the field with particular emphasis on the effects on microfluidics and nanofluidics in nanoscience and nanotechnology. In Section 1 we present a brief introduction on the backgrounds, history and concepts. Sections 2 and 3 are focused on molecular momentum transport at gas-solid and liquid-solid interfaces, respectively. Summary and conclusions are finally presented in Section 4. 相似文献
Summary: A new analysis tool is presented that uses the governing kinetic scheme to predict properties of low‐density polyethylene (LDPE) such as the detailed shape of the molecular weight distribution (MWD). A model that captures mixing details of autoclave reactor operation is used to provide a new criterion for the onset of MWD shouldering. Kinetic effects are shown to govern the existence of MWD shoulders in LDPE reactors, even when operation is far from perfectly‐mixed. MWD shoulders occur when the mean reaction environment has a relatively high radical concentration and has a high polymer content, and is at a low temperature. Such conditions maximize long chain formation by polymer transfer and combination‐termination, while limiting chain scission. For imperfectly‐mixed reactors, the blending of polymer‐distributions produced in different spatial locations has a small effect on the composite MWD. However, for adiabatic LDPE autoclaves, imperfect mixing broadens the stable range of mean reactor conditions, and thereby increases the possibility for MWD shouldering.
Polymer MWD produced in an LDPE autoclave reactor by various kinetic mechanisms. 相似文献
Self-diffusion coefficients of exponential-six fluids are studied using equilibrium molecular dynamics simulation technique. Mean-square displacements and velocity autocorrelation functions are used to calculate self-diffusion coefficients through Einstein equation and Green-Kubo formula. It has been found that simulation results are in good agreement with experimental data for liquid argon which is taken as exponential-six fluid. The effects of density, temperature and steepness factor for repulsive part of exponential-six potential on self-diffusion coefficients are also investigated. The simulation results indicate that the self-diffusion coefficient of exponential-six fluid increases as temperature increases and density decreases. In addition, the larger self-diffusion coefficients are obtained as the steepness factor increases at the same temperature and density condition. 相似文献