首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 359 毫秒
1.
张生  李翔  王安杰 《工业催化》2005,13(11):12-17
从燃料油中含氮化合物和含硫化合物特点出发,介绍了含氮化合物对加氢脱硫(HDS)催化剂活性、选择性以及失活等性能的影响。研究表明,含氮化合物主要通过与含硫化合物在催化剂表面的竞争吸附,强烈抑制HDS催化剂活性。含氮化合物对含硫化合物加氢(HYD)和氢解(HYG)两条并行反应路径均有抑制作用,但对HYD反应路径的抑制作用更为强烈。含氮化合物还能通过毒化催化剂酸中心进而影响催化剂HDS活性和选择性,而其在催化剂表面的强烈吸附也是引发催化剂结焦和失活的重要因素。  相似文献   

2.
以质量分数为0.8%的二苯并噻吩(DBT)的十氢萘溶液为模型化合物,考察了SiO_2,Si-MCM-41和Al-MCM-41负载的Pd和Pt催化剂加氢脱硫(HDs)反应性能,并与传统的γ-Al_2O_3负载的催化剂进行了对比.反应结果表明,负载型Pd和Pt催化剂在DBT的HDS反应中表现出不同的反应特点.Pd催化剂具有较高的加氢反应路径(HYD)选择性,而Pt催化剂则表现出较高的直接脱硫路径(DDS)选择性.载体结构和表面酸性显著影响其负载的Pd和Pt贵金属催化剂的HDS活性以及HYD选择性和稳定性.提高载体比表面积和酸性有利于提高负载型贵金属催化剂HYD选择性.Al-MCM-41具有规整的介孔结构、较高比表面积和较强酸性,其负载的Pd和Pt催化剂表现出较高的HYD选择性和稳定性.研究还发现,催化剂加氢裂化反应活性随载体酸性的提高而增加.  相似文献   

3.
以二苯并噻吩(DBT)的十氢萘溶液(DBT质量分数为0.8%)为模型化合物,考察了CeO2改性的Ni2P催化剂加氢脱硫(HDs)反应性能,并用X射线衍射(xRD)和程序升温还原(TPR)对催化剂进行了表征。XRD结果表明,CeO2的引入抑制了Ni5P4杂晶的生成,Ni2P催化剂的晶粒尺寸随CeO2含量的增加而降低。TPR结果显示,在CeO2与Ni2P催化剂前驱体之问存在较强的相互作用,虽然抑制了NiO的还原,但促进了Ni2P物种的生成。从DBT的HDS反应结果可以看出,CeO2对于Ni2P加氢脱硫催化剂是一种有效的助剂,它的引入同时促进了Ni2P催化剂直接脱硫(DDS)和加氢(HYD)路径反应活性,从而提高了催化剂HDS活性。其中,催化剂的HYD反应活性随CeO2含量的变化规律与催化剂晶粒尺寸变化规律相似,说明Ni2P催化剂HYD反应活性对催化剂结构变化较为敏感。  相似文献   

4.
以Hβ为内核、十六烷基三甲基溴化铵为模板剂、偏硅酸钠为硅源,采用附晶生长法在Hβ表面包覆了一层MCM-41介孔相。分别以Hβ、MCM-41、包覆型复合分子筛(βM)以及Hβ和MCM-41机械混合物(β+M)作载体,采用等体积浸渍法制备了Pt催化剂。以二苯并噻吩(DBT)为模型含硫化合物,考察了催化剂的加氢脱硫(HDS)反应性能。结果表明,引入酸性Hβ载体不同程度地提高了催化剂的HDS活性,但也加剧了HDS产物的裂化反应。Pt/βM的HDS活性与Pt/Hβ接近,显著高于Pt/MCM-41和Pt/β+M。DBT在Pt/MCM-41上以直接脱硫路径为主,且不发生裂化反应。Pt/βM兼具很高的HDS活性和较低的裂化选择性,同时预加氢路径选择性也有所提高,说明包覆型βM复合分子筛是一种潜在的优异深度HDS催化剂载体。  相似文献   

5.
刘文静 《工业催化》2005,12(Z1):69-71
研究了二苯并噻吩(DBT)在Ni-Mo-W/γ/Al2O3上的加氢脱硫(HDS)反应产物分布、可能的反应网络以及温度对产物分布的影响,揭示了HDS反应的可能机理.研究发现,DBT在Ni-Mo-W/γ-Al2O3上的HDS反应主要通过直接氢解路径和加氢路径进行,且后者的速率是前者的两倍.考察了芳烃(萘)、硫化物(硫化氢)和氮化物(喹啉)三种物质对DBT在Ni-Mo-W/γ-Al2O3催化剂上HDS反应的影响,结果表明,芳烃对反应有较弱的抑制作用,并且对两个路径的抑制作用相当.氮化物喹啉对反应有较强的抑制作用,其主要是通过竞争吸附作用抑制加氢路径.硫化物H2S对反应也有一定的抑制作用,其抑制直接氢解脱硫路径,但对加氢路径有一定的促进作用.  相似文献   

6.
以次磷酸钠和氯化镍为原料,采用氢等离子体还原法(PR)制备了高活性加氢脱硫(HDS)Ni_2P-PR催化剂,以质量分数为0.8%的二苯并噻吩(DBT)/十氢萘溶液为模型化合物,考察了催化剂的加氢脱硫反应性能,并用X射线衍射(XRD)对催化剂晶相进行表征。新制备的催化剂在移入固定床反应器之前用10%H2S/Ar钝化,以保护其结构不被破坏。实验证明,PR还原法制备的Ni_2P-PR催化剂的加氢脱硫活性高于程序升温还原(TPR)法制备的Ni_2P-TPR催化剂。XRD表征结果表明,Ni_2P-PR的粒度较小,活性中心较多,导致其高活性增加。在Ni_2P-PR催化剂上,DBT主要通过直接脱硫(DDS)路径脱硫。  相似文献   

7.
以氯化镍(硝酸镍)和次磷酸铵(磷酸氢二铵)(Ni:P摩尔比为1)为原料,氢等离子体还原法(PR)制备高活性加氢脱硫Ni_2P催化剂,新制备的催化剂在移入固定床反应器之前用质量分数10%H_2S/Ar钝化,以保护其结构不被破坏。以质量分数为0.8%的二苯并噻吩(DBT)/十氢萘溶液为模型化合物,考察了不同磷原催化剂的加氢脱硫(HDS)性能。X射线衍射(XRD)对制备的催化剂晶相进行了表征。实验证明,低价态P源制备的Ni_2P催化剂(N_2P-1-PR)的加氢脱硫(HDS)活性高于高价态P源制备的Ni_2P催化剂(N_2P-2-PR)。XRD表征结果表明,N_2P-1-PR粒度较小,导致其高活性增加。在Ni_2P催化剂上,DBT主要通过直接脱硫路径(DDS)。  相似文献   

8.
以中和法合成的不同SiO2含量的改性氧化铝为载体,本文制备系列Si改性的NiMo/Al2O3催化剂,采用X射线衍射(XRD)、N2物理吸附(BET)、程序升温脱附(NH3-TPD)、吡啶吸附红外光谱(Py-IR)、程序升温还原(H2-TPR)、高分辨透射电镜(HRTEM)和X射线光电子能谱(XPS)等分析手段进行详细表征。表征结果显示,引入Si减弱了活性金属与载体之间的相互作用,改善了催化剂的孔结构与表面酸性分布,提高了活性相分散度和金属硫化度,促使形成更多的II类NiMoS活性相。以二苯并噻吩(DBT)为模型化合物,在固定床加氢装置上考察了系列催化剂的加氢脱硫(HDS)性能,结果表明,引入Si可降低DBT的加氢反应活化能,提高反应速率常数,进而提高催化剂的加氢脱硫活性。对比DBT转化率在50%时的脱硫产物分布表明引入Si可影响催化剂的反应路径选择性,直接脱硫路径(DDS)选择性从83.69%增加至92.89%,证实了催化剂的表征规律。  相似文献   

9.
以含介孔ZSM-5分子筛的Al_2O_3为载体,制备了含介孔ZSM-5分子筛的Mo CoP/Al_2O_3催化剂,采用固定床微反和中试评价装置考察了催化剂的加氢脱硫活性,并通过N2吸附-脱附、吡啶吸附红外、X射线衍射(XRD)、CO原位吸附红外(CO-FTIR)等手段对载体和催化剂进行物化性质分析。结果表明,介孔ZSM-5能够提高催化剂的酸性,增加催化剂上Mo CoS活性相的数量。含介孔ZSM-5分子筛的催化剂的酸性位容易被含氮化合物占据而影响HDS活性。采用级配装填技术可以充分发挥C12-ZSM5催化剂的加氢脱硫活性,能够将硫脱除至5. 9 ng/μL,其相对脱硫活性是C-Al_2O_3催化剂的1. 47倍。  相似文献   

10.
文章主要介绍了柴油馏分中难脱除的二苯并噻吩类(DBTs)硫化物存在的加氢脱硫反应路径,其中DDS和HYD是目前研究较多的主要反应路径。总结了催化剂活性助金属、硫化氢、氮化物以及氢分压对加氢脱硫反应路径选择性的影响并探究其影响机理。  相似文献   

11.
The hydrodesulfurization (HDS) of the highly refractory sulfur-containing compounds, dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (4,6-DMDBT), and the effect of the basic and non-basic nitrogen heterocyclic compounds, such as quinoline and carbazole, on HDS using a dispersed unsupported Mo catalyst and in situ generated hydrogen were studied. Experimental results indicated that the dispersed unsupported Mo catalyst was effective for the HDS of 4,6-DMDBT in a mixture containing DBT. The direct desulfurization pathway (DDS) was the preferred pathway for the HDS of DBT while the hydrogenation pathway (HYD) was the preferred pathway for the HDS of 4,6-DMDBT under our experimental conditions. A strong inhibitive effect of the basic quinoline or the non-basic carbazole on the HDS of each of the sulfur-containing compounds was observed. The DDS and HYD pathways in the HDS of the refractory sulfur-containing compounds were affected to a different extent by the nitrogen-containing compounds, suggesting that different active sites were involved in these two reaction pathways.  相似文献   

12.
The performance of a new type of CoMoS/Al2O3 catalyst, with added fluorine and prepared by sonochemical and chemical vapor deposition (CVD) methods, was investigated in the hydrodesulfurization (HDS) of dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (4,6-DMDBT). The catalyst, which was designed to contain optimum amounts of fluorine and cobalt, exhibited a higher activity, ca. 4.6 times higher activity particularly in the HDS of 4,6-DMDBT, than a fluorine-free catalyst prepared by a conventional impregnation method. The enhanced activity of the new catalyst can be attributed to the cumulative effects of individual factors involved in the catalyst preparation. That is, the use of a sonochemical synthesis led to a high dispersion of small MoS2 crystallites on the alumina, and the addition of the Co species to the catalyst by CVD caused a close interaction between the Co species and the MoS2 crystallites to produce numerous CoMoS species, which are the catalytically active species for HDS. The addition of fluorine increased the amounts of acidic sites in the catalyst, which promoted hydrogenation (HYD) route to a greater extent than the direct desulfurization (DDS) route in DBT HDS and both HYD and DDS routes to similar extents in the case of 4,6-DMDBT HDS. Accordingly, the addition of fluorine led to a greater increase in catalytic activity for 4,6-DMDBT HDS than for DBT HDS.  相似文献   

13.
This study shows that titanium incorporation into hexagonal mesoporous silica (HMS) material has a positive effect on the activity of supported CoMo catalysts in the hydrodesulfurization (HDS) of dibenzothiophene (DBT) and 4-ethyl,6-methyl-dibenzothiophene (4E6MDBT). All catalysts showed the highest activity in the HDS of DBT than in the HDS of 4E6MDBT. The low reactivity observed in the HDS of 4E6MDBT is caused by the steric hindrance of the two alkyl groups at positions 4 and 6. The HDS of DBT over Ti-free catalyst proceeds exclusively via the direct desulfurization (DDS) route whereas over Ti-containing catalysts proceed via DDS (main route) and hydrogenation (HYD) pathway. The catalyst with a Si/Ti = 40 (molar ratio) was the most active in the HDS of DBT. A further increase in the Ti-content led to a decrease in Brønsted acidity and the SBET specific area of the catalysts, which implies a decrease in the bifunctional character of the catalysts. Raman spectroscopy demonstrated that Ti-incorporation into HMS material leads to a decrease in the degree of polymerization of Mo species, and this implies a better dispersion of MoS2, in good agreement with the XPS measurements. Regarding the HDS-resistant 4E6MDBT, the HDS reaction over the Ti-free catalyst was found to proceed exclusively via the dealkylation (DA) route. After Ti-incorporation into HMS material, additional acid-catalyzed isomerization occurs. With respect to industrial sample, the catalyst with Si/Ti = 40 showed lower intrinsic activity as well as greater selectivity toward isomerization route products.  相似文献   

14.
以介孔分子筛SBA-15为载体,制备一系列不同La含量的La-Ni2P/SBA-15催化剂前驱体,将La-Ni2P/SBA-15前驱体涂覆在预处理的整体式载体堇青石上,在H2气氛程序升温还原,制备不同La含量的La-Ni2P/SBA-15/堇青石整体式催化剂。对合成的催化剂进行X射线衍射和N2吸附-脱附结构表征,并评价对二苯并噻吩的加氢脱硫活性。结果表明,Ni2P存在于所有的La-Ni2P/SBA-15/堇青石整体式催化剂中,且随着La含量的增加,La-Ni2P/SBA-15/堇青石整体式催化剂的比表面积和孔体积均有一定程度的提高,催化活性也提高。对于Ni2P/SBA-15/堇青石整体式催化剂,在300 ℃和380 ℃时,二苯并噻吩加氢脱硫转化率仅为27.2%和91.3%;而1.5%La-Ni2P/SBA-15/堇青石催化剂在300 ℃和380 ℃时,二苯并噻吩转化率分别为36.8%和96.3%,显示出较好的二苯并噻吩加氢脱硫活性。La-Ni2P/SBA-15/堇青石整体式催化剂在对二苯并噻吩的加氢脱硫过程中,以直接脱硫和加氢脱硫两种脱硫方式同时进行,并且以直接脱硫为主。  相似文献   

15.
A one-step synthesized Ni-Mo-S catalyst supported on SiO2 was prepared and used for hydrodesulphurization (HDS) of dibenzothiophene (DBT), and 4,6-dimethyl-dibenzothiophene (4,6-DMDBT), and for hydrogenation of tetralin. The catalyst showed relatively high HDS activity with complete conversion of DBT and 4,6-DMDBT at temperature of 280 °C and a constant pressure of 435 psi. The HDS conversions of DBT and 4,6-DMDBT increased with increasing temperature and pressure, and decreasing liquid hourly space velocity (LHSV). The HDS of DBT proceeded mostly through the direct desulphurization (DDS) pathway whereas that of 4,6-DMDBT occurred mainly through the hydrogenation-desulphurization (HYD) pathway. Although the catalyst showed up to 24% hydrogenation/dehydrogenation conversion of tetralin, it had low conversion and selectivity for ring opening and contraction due to the competitive adsorption of DBT and 4,6-DMDBT and insufficient acidic sites on the catalyst surface.  相似文献   

16.
Unsupported NiMo sulfide catalysts were prepared from ammonium tetrathiomolybdate (ATTM) and nickel nitrate by using a hydrothermal synthesis method involving water, organic solvent and hydrogen. The activity of these catalysts in the simultaneous hydrodesulfurization (HDS) of dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (4,6-DMDBT) was much higher than that of the commercial NiMo/Al2O3 sulfide catalysts. Interestingly, the unsupported NiMo sulfide catalysts showed higher activity for hydrogenation (HYD) pathway than the direct desulfurization (DDS) pathway in the HDS of DBT. The same trends were observed for the HDS of 4,6-DMDBT. Morphology, surface area, pore volume and the HDS activity of unsupported NiMo sulfide catalyst depended on the catalyst preparation conditions. Higher temperature and higher H2 pressure and addition of an organic solvent were found to increase the HDS activity of unsupported NiMo sulfide catalysts for both DBT and 4,6-DMDBT HDS. Higher preparation temperature increased HYD selectivity but decreased DDS selectivity. High-resolution TEM images revealed that unsupported NiMo sulfide prepared at 375 °C shows lower number of layers in the stacks of catalyst with more curvature and shorter length of slabs compared to that prepared at 300 °C. On the other hand, higher preparation pressure increased DDS selectivity but decreased HYD selectivity for HDS of 4,6-DMDBT. HRTEM images showed higher number of layers in the stack for the NiMo sulfide prepared under an initial H2 pressure of 3.4 MPa compared to that under 2.1 MPa. The optimal Ni/(Mo + Ni) ratio for the NiMo sulfide catalyst was 0.5, higher than that for the conventional Al2O3-supported NiMo sulfide catalysts. This was attributed to the high dispersion of the active species and more active NiMoS generated. The present study also provides new insight for controlling the catalyst selectivity as well as activity by tailoring the hydrothermal preparation conditions.  相似文献   

17.
V.G. Baldovino-Medrano 《Fuel》2010,89(5):1012-14541
The catalytic functionalities of bimetallic Pt-Mo/γ-Al2O3 catalysts in hydrotreatment were studied by performing simultaneous and independent dibenzothiophene (DBT) hydrodesulfurization (HDS) and naphthalene hydrodearomatization (HDA) reactions as a function of the activating agent and the MoO3 content. Pt-Mo/γ-Al2O3 catalysts always displayed a higher selectivity to both the direct route of desulfurization (DDS) of DBT and to HDS over HDA than the one exhibited by conventional CoMo and NiMo/γ-Al2O3. It was established that for the Pt-Mo catalytic system, the selectivity DDS to the hydrogenation route of desulfurization of DBT can be indirectly described by the selectivity HDS/HDA in simultaneous HDS-HDA catalytic tests. The model of an active phase composed of separated metallic Pt particles, PtSx species, and sulfided Mo which can either act as independent or cooperative active centers seems to be suitable to explain both the observed kinetic trends and the synergy effect between Pt and Mo.  相似文献   

18.
A series of B-Ni2P/SBA-15/cord monolithic catalysts were prepared by coating the slurry of the B-Ni2P/SBA-15 precursors on a pretreated cordierite support, and followed by temperature-programmed reduct...  相似文献   

19.
The hydrodesulfurization (HDS) of dibenzothiophene (DBT) and of 4,6-dimethyldibenzothiophene (4,6-DMDBT) was carried out on sulfided Mo and CoMo on HY catalysts, and also on sulfided Mo and CoMo on alumina catalysts (fixed bed reactor, 330°C, 3 MPa hydrogen pressure). On all the catalysts, the two reactants transformed through the same parallel pathways: direct desulfurization (DDS) leading to biphenyl-type compounds, and desulfurization after hydrogenation (HYD) leading first to tetrahydrogenated intermediates, then to cyclohexylbenzene-type products. However, additional reactions were observed with the zeolite-supported catalysts, namely methylation of the reactants, cracking of the desulfurized products, and, in the case of 4,6-DMDBT, displacement of the methyl groups and transalkylation. The global activity of Mo/zeolite in DBT or 4,6-DMDBT transformation as well as its activity for the production of desulfurized products (HDS) were much higher than those of Mo/alumina. On the other hand, cobalt exerted a promoting effect on the activity in the transformation of DBT or 4,6-DMDBT of all the molybdenum catalysts. However, this effect was much less significant with the zeolite support than with the alumina support, which indicated that the promoter was not well associated to molybdenum on the zeolite support. Therefore, the activity of CoMo/zeolite in the HDS of DBT was much lower than that of CoMo/alumina. On the contrary, in the case of 4,6-DMDBT CoMo/zeolite was more active in HDS than CoMo/alumina. This increase in HDS activity was attributed to the transformation of 4,6-DMDBT into more reactive isomers through an acid-catalyzed methyl migration. The consequence was that on the zeolite-supported catalyst 4,6-DMDBT was more reactive than DBT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号