首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The aim of this study was to investigate the effect of different weight concentrations of silver (0.1, 0.3, 0.5 and 0.7 wt.%) on the microstructure, hardness and wear properties of the gravity cast zinc–aluminium based alloy ZA-12. The alloys were manufactured under nitrogen protective atmosphere by a gravity casting process. Metallographic studies reveal that the addition of silver to the standard ZA-12 alloy changed the volume fraction and structure of the primary β-dendrites in the ZA-12 alloy. Also, it was observed that the addition of silver to ZA12 alloy enhanced the hardness and wear properties effectively. However, the corrosion resistance was decreased with increasing silver content. In addition to this, the highest hardness value among experimental alloys was obtained for the alloy containing 0.7 wt.% Ag with 116 HB. The wear rate for all applied loads is decreased with rising silver content. A similar trend was observed for the friction coefficient. The alloy containing 0.7 wt.% Ag exhibited the highest wear resistance at all loads.  相似文献   

2.
Ni3Si alloy with different content of titanium was fabricated by powder metallurgy method. The microstructures, hardness and tribological properties of the alloys were investigation. The results showed that pure Ni3Si alloy was composed of β1‐Ni3Si phase and γ‐Ni31Si12 phase, and Ni3Ti phase formed with titanium addition. The hardness of the alloy decreased with the increasing titanium content. The friction coefficient of pure Ni3Si alloy increased with the increasing load, while the friction coefficient of the alloy with titanium addition decreased. The wear rates of the alloys were all increased with increasing load, and the alloy with 5 % titanium addition had the best wear resistance properties. The wear mechanisms of the alloys were abrasive wear at low load, and the wear mechanisms changed to oxidative wear at high load.  相似文献   

3.
The ZA-27 alloy is a zinc–aluminium casting alloy that has been frequently used as the material for sleeves of plain bearings. It has good physical, mechanical and tribological properties. However, one of the major disadvantages is its dimensional instability over a period of time (ageing). To overcome this, copper in the alloy may be replaced with silicon. Coarsening of silicon particles can be controlled by a suitable addition of strontium. In this paper, the commercial ZA-27 alloy and six different Zn25Al alloys (with 1 and 3 wt.% silicon; and with 0, 0.03 and 0.05 wt.% strontium) were obtained by casting in the preheated steel mould. Casting of the alloys was carried out at a laboratory level. In the alloys containing silicon, a finer dendritic structure was noticed compared to the structure of the commercial ZA-27 alloy. The addition of strontium influenced the size and distribution of primary silicon particles. Needle-like particles of eutectic silicon were changed into the fibrous ones. The presence of silicon and strontium did not significantly affect mechanical properties of the obtained Zn25Al alloys compared to mechanical properties of the commercial ZA-27 alloy. Wear rate of the alloys containing silicon was lower than that of the ZA-27 alloy. The addition of strontium further lowers the wear rate and slightly increases the coefficient of friction.  相似文献   

4.
测试二元NiAl合金、NiAl-Al2O3-TiC原位内生复合材料以及NiAl-Cr(Mo)-Hf共晶合金的室温摩擦磨损性能,研究了磨损机制.结果表明:NiAl材料的抗磨损性能与材料的硬度和断裂韧性成正比,在磨损过程中硬质陶瓷颗粒能有效地传递应力和起到支撑作用,减轻材料的磨损.因此NiAl-Al2O3-TiC复合材料的抗磨损性能最好,在相同工况下其磨损率为NiAl-Cr(Mo)-Hf共晶合金的1/4-3/4和二元NiAl合金的1/20-1/10.摩擦系数随着三种NiAl材料硬度的提高而降低.三种NiAl材料的室温干摩擦磨损过程受控于塑性变形,其磨损机制主要是磨粒磨损机制,随着载荷的增加,磨损表面依次呈现出塑性变形、显微剥落和粘着磨损特征,磨损机制的改变对磨损率和摩擦系数具有重要的影响.  相似文献   

5.
Based on the fundamental investigations of ageing characteristics and microstructures, pedermance properties of monotectoid Zn-Al based alloy ZnAl35Cu3Si2 (in wt-%) named ZA-35 were studied. The test results showed the ZA-35 alloy displayed better bearing wear resistance than copper bronze and lower coefficient of thermal expansion than other Zn-Al alloys. These excellent performance properties have been verified by practical applications.  相似文献   

6.
In this paper, the wear performance of the aged AlMgSi1 alloy was investigated. Great improvements in mechanical properties of Al alloys can be achieved by suitable solution treatment and aging operations. A pin-on-disk wear machine was designed and developed for abrasive wear tests. The wear resistance was evaluated using a pin-on-disk wear testing method with a SiC abrasive paper counterface. The variation of wear volume is presented as a function of applied normal load, abrasive grit size and sliding distance for running speed. Mass losses were measured within a load range of 6.45–11 N, a sliding velocity range of 0.078–0.338 m/s and abrasive grit size of 5–30 μm. The effects of different sliding speeds and loads on wear resistance and surface roughness were also examined. It was measured amounts of mass loss and examined worn surfaces. Metal microscope was used to study the microstructures of the wear scars. Natural aged specimen observed maximum wear resistance.  相似文献   

7.
采用压铸工艺制备Cu含量为5%~20%(质量分数,下同)的Al-Cu合金试样。在布氏硬度计上测定试样的硬度,利用球盘往复式磨损试验机进行3种载荷(1~5 N)的磨损实验,通过SEM和EDS分析不同Cu含量试样的磨损机理。结果表明:随着Cu含量从5%增加至20%,Al-Cu合金中θ相的体积分数由2.00%增加到25.80%,且θ相的尺寸逐渐增大;硬度从59HB增加到170HB。摩擦因数在0.4~0.85范围内变化;Al-Cu合金试样的比磨损率随Cu含量增加先急剧降低后趋于平缓,Cu含量达到15%以上合金试样比磨损率变化不大,最低比磨损率在4.1×10^(-4)mm 3·N^(-1)·m^(-1)左右;较低Cu含量试样的比磨损率随载荷变化显著,随着Cu含量增加比磨损率差别减小。Al-Cu合金的主要磨损机制为黏着磨损和磨粒磨损,低Cu含量试样以黏着磨损为主,高Cu含量试样以磨粒磨损为主;随着载荷的增加,低Cu含量试样黏着磨损程度增加,高Cu含量试样磨粒磨损程度增加。  相似文献   

8.
The infiltration of graphite/alumina preforms with a bronze alloy has been investigated taking into account the influence of the binder type, the graphite/alumina content in the preform and the percentage of binder in water. The preforms showing an acceptable rigidity have been infiltrated with a CuSn12 bronze alloy by squeeze casting considering two different pouring temperatures. The composite produced has been characterised in terms of density, Brinell hardness, coefficient of thermal expansion, as well as friction and wear behaviour. The coefficient of friction for the bronze matrix composite is around 0.17, being three times lower than that shown by the unreinforced copper alloy. Given the contact geometry (ball of steel against a planar sample) and testing conditions (20°C, dry sliding, 40% humidity), the composite wear rate is around twenty times lower that of the bronze, being 10–6mm2/kg for the composite and 2 × 10–5 mm2/kg for the bronze.  相似文献   

9.
An important limitation of aluminium alloys for mechanical applications is their poor tribological behaviour. In this study, surface treatment by plasma electrolytic oxidation (PEO) has been applied to two widely used aluminium alloys: A359 (hypoeutectic Al–Si–Mg) cast alloy and AA7075 (Al–Zn–Mg–Cu) wrought alloy, in order to improve their wear resistance, under sliding and abrasive wear conditions. The main aim of this work was the comparison of the properties and wear resistance of the oxide layers grown under the same PEO treatment conditions on two different aluminium alloys which might be coupled in engineered components. Significant differences in the phase composition, microstructure and mechanical properties measured by microindentation were observed in the oxide layers grown on the two substrates, and were ascribed to the effects of the different compositions and microstructures of the substrate alloys. Abrasion tests were carried out in a micro-scale abrasion (ball-cratering) test, with both alumina and silicon carbide abrasive particles. The results demonstrated the influence of the abrasive material on wear behaviour: whereas relatively aggressive SiC particles gave comparable results for both PEO treated and untreated samples, with the less aggressive Al2O3 abrasive the wear rates of the PEO treated samples, for both substrates, were significantly lower than those of the untreated substrates. In unlubricated sliding the PEO treatment significantly increase the wear resistance of both the aluminium alloys, at low applied load. In this condition the wear behaviour of the PEO treated alloys is strongly influenced by the stability of a protective Fe–O transfer layer, generated by wear damage of the steel counterpart. Under high applied loads however, the transfer layer is not stable and the hardness of the PEO layer, as well as the load bearing capacity of the substrate, become the main factors in influencing wear resistance.  相似文献   

10.
The present investigation deals with the effect of Al2O3 particle reinforcement on the lubricated sliding behavior of ZA-27 alloy. The composites with 3, 5, and 10 wt% of Al2O3 particles were produced by the compocasting procedure. Tribological properties of alloy and composites were studied, using block-on-disk tribometer at different specific loads and sliding speeds. The test results revealed that composite specimens exhibited significantly lower wear rate, but higher coefficient of friction than the matrix alloy specimens in all the combinations of applied loads and sliding speeds. The improved antiwear characteristics of the composites were influenced by positive effects of higher frictional heating on compatibility of the composite phases and suppressing micro-cracking tendency. Due to that, effects of reinforcing hard particles were manifested through the reduced wear rate of composites, especially in conditions of higher load, lower sliding speeds and higher Al2O3 particle content. In present wear tests, the significant forming of mechanically mixed layers was not noticed, what is confirmed by the SEM microphotographs.  相似文献   

11.
In this study, the microstructure and abrasive wear properties of varying volume fraction of particles up to 12% B4C particle reinforced 2014 aluminium alloy metal matrix composites produced by stircasting method was investigated. The density, porosity and hardness of composites were also examined. Wear behaviour of B4C particle reinforced aluminium alloy composites was investigated by a block-on-disc abrasion test apparatus where the samples slid against the abrasive suspension mixture (contained 10 vol.% SiC particles and 90 vol.% oil) at room conditions. Wear tests performed under 92 N against the abrasive suspension mixture with a novel three body abrasive. For wear behaviour, the volume loss and specific rate of the samples have been measured and the effects of sliding time and the content of B4C particles on the abrasive wear properties of the composites have been evaluated. The dominant wear mechanisms were identified using SEM. Microscopic observation of the microstructures revealed that dispersion of B4C particles was generally uniform while increasing volume fraction led to agglomeration of the particles and porosity. The density of the composite decreased with increasing reinforcement volume fraction but the porosity and hardness increased with increasing particle content. Moreover, the specific wear rate of composite decreased with increasing particle volume fraction. The wear resistance of the composite was found to be considerably higher than that of the matrix alloy and increased with increasing particle content.  相似文献   

12.
A ternary ZnAl40Cu2 and a quaternary ZnAl40Cu2Si2.5 alloys were produced by permanent mold casting and subjected to T5 heat treatment at a temperature of 150 °C for 24 hours. The structural, mechanical and lubricated wear properties of these alloys were investigated in the as-cast and heat-treated conditions and the results were compared with those of SAE 65 (CuSn12) plain bearing bronze. Microstructure of the ternary alloy consisted of aluminum-rich α, eutectoid conversion product of α+η and ϵ phase located in the interdendritic channels. In addition to these phases, silicon particles were observed in the microstructure of the quaternary alloy. T5 heat treatment caused a considerable amount of reduction in the hardness, tensile strength and wear resistance of ZnAl40-based ternary and quaternary alloys, but improved their ductility and stability. These alloys in the as-cast and heat-treated conditions exhibited lower wear volume or higher wear resistance than SAE 65 bearing bronze. Among the experimental alloys, the optimum mechanical properties and wear performance were obtained from ZnAl40Cu2Si2.5 alloy in both as-cast and heat-treated conditions. Adhesion appeared to be the main wear mechanism for the ZnAl40-based alloys, but abrasion dominated the wear of SAE 65 bronze.  相似文献   

13.
Abstract

The paper deals with the sliding wear behaviour of cast Al-Fe-V-Si alloys evaluated by 'pin on disc' tribometry. The alloys were castin cylindrical15 mm diameter metallic moulds from which 8 mmdiameter pins were machined. Volumetric wear loss and coefficient of friction were measured. Worn surfaces of the pins were examined by scanning electron microscopy. It was observed that by modifying the Al-Fe-V-Si alloys with Mg or Al-Mg master alloy the structure of Al13Fe4 precipitate changed from ten-armed star-like to hexagonal, rectangular, cuboidal, and other compact forms. The wear rate of the cast Al-Fe-V-Si alloys was much lower than that of eutectic Al-Si alloy. Modified Al-Fe-V-Si alloys exhibited lower wear rate and coefficient of friction than the unmodified Al-Fe-V-Si alloy. The wear rate decreased with increasing load for the modified Al-Fe-V-Si alloys. Both the wear rate and coefficient offriction were found to be load dependent. During wear extensive plastic deformation and work hardening occurred. The wear was shown to take place by delamination.  相似文献   

14.
利用喷射沉积过喷粉热压烧结制备了 Al50Si50合金,用 MMW-1型立式万能摩擦磨损试验机来测试不同热压烧结工艺条件下所制备合金的摩擦磨损性能,用金相显微镜和扫描电镜观察其组织和磨损形貌,并分析其磨损机理。研究结果表明:随着烧结压力增加、温度升高、时间延长,热压烧结试样的密度和致密度增加,摩擦系数和比磨损率降低。试样的磨损过程中存在磨料磨损和黏着磨损两种机制,且由于摩擦磨损过程中 Si 相的存在导致材料以磨料磨损为主。  相似文献   

15.
采用化学气相渗透法(CVI)制备了二维碳纤维增强碳化硅(C/SiC)陶瓷基复合材料. 基于耦合应力等效模拟系统的开发, 采用摩擦扭矩的变化表征传动过程的摩擦磨损性能. 研究了以传动为背景的高载荷、低转速摩擦磨损行为及机理. C/SiC复合材料以其较低的摩擦扭矩、低的磨损率特别是在高载荷下的较小变形验证了良好的耐磨特性以及承载能力. 相同条件下其磨损率只有Ti合金的1/10~1/20. 低转速下磨损机理以磨粒磨损为主, 高载荷没有引起表面热裂纹.  相似文献   

16.
The dry sliding wear behavior of spray-deposited Al-Cu-Mn alloy and its composite reinforced with 13 vol.% SiC particles have been studied in the applied load of 5–400 N (corresponding normal stress is 0.1–8 MPa). It showed that SiC particle-reinforced AlCuMn composite produced by spray deposition process exhibited an improved wear resistance at the entire applied load range in comparison to the monolithic alloy. However, this improvement was not significant in the overall load range. With increasing the applied load, the wear rate of the composite and the monolithic alloy exhibited four different regions, therefore the wear was dominated by different wear mechanism. The former three regions all belonged to mild wear. The transition from mild to severe wear occurred at the similar critical load for both the composite and the monolithic alloy. For both the composite and the monolithic alloy, with increasing applied load, the dominant wear mechanism exhibited successively: oxidative mechanism, delamination mechanism, subsurface-cracking-assisted adhesive mechanism and adhesive mechanism.  相似文献   

17.
Wear characteristics of spray formed Al-alloys and their composites   总被引:1,自引:0,他引:1  
In the present investigation, different Al based alloys such as Al–Si–Pb, Al–Si, Al–Si–Fe and 2014Al + SiC composites have been produced by spray forming process. The microstructural features of monolithic alloys and composite materials have been examined and their wear characteristics have been evaluated at different loads and sliding velocities. The microstructural features invariably showed a significant refinement of the primary phases and also modification of secondary phases in Al-alloys. The Pb particles in Al–Si–Pb alloy were observed to be uniformly distributed in the matrix phase besides decorating the grain boundaries. The spray formed composites showed uniform distribution of SiC particles in the matrix. It was observed that wear resistance of Al–Si alloy increases with increase in Pb content; however, there is not much improvement after addition of Pb more than 20%. The coefficient of friction reduced to 0.2 for the alloy containing 20%Pb. A sliding velocity of 1 ms−1 was observed to be optimum for high wear resistance of these materials. Alloying elements such as Fe and Cu in Al–Si alloy lead to improved wear resistance compared to that of the base alloy. The addition of SiC in 2014Al alloy gave rise to considerable improvement in wear resistance but primarily in the low pressure regime. The wear rate seemed to decrease with increase in sliding velocity. The wear response of the materials has been discussed in light of their microstructural features and topographical observation of worn surfaces.  相似文献   

18.
The effect of size of silicon carbide particles on the dry sliding wear properties of composites with three different sized SiC particles (19, 93, and 146 μm) has been studied. Wear behavior of Al6061/10 vol% SiC and Al6061/10 vol% SiC/5 vol% graphite composites processed by in situ powder metallurgy technique has been investigated using a pin-on-disk wear tester. The debris and wear surfaces of samples were identified using SEM. It was found that the porosity content and hardness of Al/10SiC composites decreased by 5 vol% graphite addition. The increased SiC particle size reduced the porosity, hardness, volume loss, and coefficient of friction of both types of composites. Moreover, the hybrid composites exhibited lower coefficient of friction and wear rates. The wear mechanism changed from mostly adhesive and micro-cutting in the Al/10SiC composite containing fine SiC particles to the prominently abrasive and delamination wear by increasing of SiC particle size. While the main wear mechanism for the unreinforced alloy was adhesive wear, all the hybrid composites were worn mainly by abrasion and delamination mechanisms.  相似文献   

19.
The effect of FeCr (M7C3–M23C6) particles on the wear resistance of a CuSn alloy was investigated under 125 N load, and 300–475 K temperature interval. Sliding tests were performed to investigate the wear behavior of FeCrp-reinforced CuSn metal–matrix composites (MMCs) against DIN 5401 in a block-on-ring apparatus. The CuSn/FeCrp MMCs, which were prepared by addition of 5, 10, 15 and 20 vol.% of FeCrp, were produced by powder metallurgy and the size of the particles was taken as 16 μm. The powders were uniaxially cold compacted by increasing pressure up to 250 Mpa. The dry sliding wear tests were carried out in an incremental manner, i.e. 300 m per increment and 3500 m total sliding length. The wear-test results were used for investigation of the relationship between weight loss, microstructure, surface hardness, friction coefficient, particle content and thermal conductivity. Finally, it was observed that FeCrp reinforcement is beneficial in increasing the wear resistance of CuSn MMCs. FeCr particles in MMCs also tend to reduce the extent of plastic deformation in the subsurface region of the matrix, thereby delaying the nucleation and propagation of subsurface microcracks  相似文献   

20.
Zinc-aluminum cast alloys (ZA alloys) have good castability, mechanical properties and excellent tribological characteristics. Of all the ZA alloys, ZA-27 (containing 27% aluminum) has the highest strength and optimum wear resistance. However all the ZA alloys, including ZA-27, suffer from lack of creep resistance and high temperature stability. One probable solution to improve these properties is to reinforce the alloys with ceramic particles or fibers to result in metal matrix composites (MMCs). MMCs can be economically produced through squeeze casting which involves infiltration. This paper presents the salient features of an experimental study on ZA-27 alloy based MMCs produced through Squeeze Casting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号