首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Catalysis communications》2008,9(12):2105-2109
The catalytic performances in CO oxidation of Co3O4 nanoparticles patterned in the porosity of SBA-15 silicas are investigated. Accessibility limitations of the reactants to the catalytic sites are clearly revealed, when the Co3O4 nanoparticles are embedded in the SBA-15 pores. Despite these limitations, the synthesised Co3O4 nanoparticles exhibit promising CO oxidation properties.  相似文献   

2.
Catalysts based on crystalline nanoparticles of Mn and Co metal oxides supported on mesoporous silica SBA-15 have been developed. These materials were characterized by XRD, BET and transmission electron microscopy (TEM) techniques. SBA-15 mesoporous silica was synthesized by a conventional sol–gel method using a tri-block copolymer as surfactant. Supported Mn3O4 and Co3O4 nanoparticles were obtained after calcination of as-impregnated SBA-15 by a metal salt precursor. The catalytic activity was evaluated in the combustion of methane at low concentration.Co3O4/SBA-15 (7 wt.%) exhibits the highest performance among the different oxides. Furthermore, this novel generation of catalysts appeared as active as conventional LaCoO3 perovskite, usually taken as reference for this reaction. Thanks to its organized meso-structures, SBA-15 material creates peculiar diffusion conditions for reactants and/or products.  相似文献   

3.
Au/Co3O4 catalysts with different morphologies (nanorods, nanopolyhedra and nanocubes) were successfully synthesized and evaluated for ethylene complete oxidation. We found that support morphology has a significant effect on catalytic activity, which is related to the exposed planes of different morphological Co3O4. HRTEM revealed the Co3O4-nanorods predominantly exposes {110} planes, while the dominant exposed planes of Co3O4-nanopolyhedra and -nanocubes are {011} and {001} planes, respectively. Compared with {011} and {001} planes, {110} planes exhibit the maximum amount of oxygen vacancies, which play a major role in ethylene oxidation. Therefore, Au/Co3O4-nanorods exhibits extraordinary catalytic activity, yielding 93.7% ethylene conversion at 0 °C.  相似文献   

4.
Without use of any surfactant or oxidant, a series of Co3O4 catalysts have been prepared from cobalt nitrate aqueous solution via a very simple liquid-precipitation method with ammonium acid carbonate followed by calcination at various temperatures. The catalytic performance of the Co3O4 for CO oxidation has been studied with a continuous flowing laboratory microreactor system. The results show that the CO conversion of all the samples can reach 100% at ambient temperature. The catalyst calcined at 300 °C is able to maintain its activity for CO complete oxidation more than 500 min at 25 °C and about 240 min even at −78 °C. High reaction temperature results in a high catalytic stability, while the catalytic stability decreases with further increasing the reaction temperature. Characterizations with X-ray powder diffraction and transmission electron microscopy suggest that all the samples exist as a pure Co3O4 phase with the spinel structure, the samples are apt to aggregate and the specific surface area gradually decreases with increasing the calcination temperature, which directly leads to the decrease of catalytic stability. Furthermore, the amount of active oxygen species measured by CO titration experiments appears to be critical for catalytic performance.  相似文献   

5.
Co3O4 and Mn3O4 nanoparticles were successfully impregnated on SBA-15 mesoporous silica. A high dispersion of these metal oxide particles was achieved while using a “two-solvents” procedure, allowing a proper control of the metal oxides loading (7 wt%) and size (10–12 nm). These Co3O4 and Mn3O4 supported oxides on SBA-15 were characterised by means of XRD, BET and TEM techniques. The influence of the nature of the silica support was investigated in terms of porosity and specific surface area. Since, an improved catalytic activity was achieved over SBA-15 mesoporous silica; it appears that its organised porous meso-structure creates a confinement medium which permits a high dispersion of metal oxide nanoparticles. Supported Co3O4/SBA-15 (7 wt%) showed the highest catalytic performance in the combustion of methane under lower explosive limit conditions, comparable to perovskites. These materials become therefore novel efficient combustion catalysts at low metal loading.  相似文献   

6.
A TiO2/Pt based electrode exhibited better activity for the oxidation of coal in a basic system compared to Ti/Pt, TiO2–Cu/Pt and pure metal electrodes. The surface morphologies and composition of the electrodes were studied by SEM and XRD, respectively. Linear sweep voltammetry was employed to investigate the catalytic effects of electrodes, and the product of coal oxidization was determined by a gas collection test. The TiO2/Pt electrodes that were modified with NiO and/or Co3O4 exhibited higher average currents and a lower decrease in mass during electrolysis compared to the other electrodes; this finding indicated that NiO and Co3O4 play important roles as catalysts.  相似文献   

7.
Co3O4 nanoparticles were prepared from cobalt nitrate that was accommodated in the pores of a metal-organic framework (MOF) ZIF-8 (Zn(MeIM)2, MeIM = 2-methylimidazole) by using a simple liquid-phase method. The ZIF-8 host was removed by pyrolysis under air and subsequently washing with an NH4Cl–NH3·H2O aqueous solution. Transmission electron microscopy (TEM) analysis shows that the obtained Co3O4 is composed of separate nanoparticles with a mean size of 18 nm. The Co3O4 nanoparticles exhibit excellent catalytic activity, cycling stability, and long-term stability in the low temperature CO oxidation.  相似文献   

8.
La(1−x)SrxCo(1−y)FeyO3 samples have been prepared by sol–gel method using EDTA and citric acid as complexing agents. For the first time, Raman mappings were achieved on this type of samples especially to look for traces of Co3O4 that can be present as additional phase and not detect by XRD. The prepared samples were pure perovskites with good structural homogeneity. All these perovskites were very active for total oxidation of toluene above 200 °C. The ageing procedure used indicated good thermal stability of the samples. A strong improvement of catalytic properties was obtained substituting 30% of La3+ by Sr2+ cations and a slight additional improvement was observed substituting 20% of cobalt by iron. Hence, the optimized composition was La0.7Sr0.3Co0.8Fe0.2O3. The samples were also characterized by BET measurements, SEM and XRD techniques. Iron oxidation states were determined by Mössbauer spectroscopy. Cobalt oxidation states and the amount of O electrophilic species were analyzed from XPS achieved after treatment without re-exposition to ambient air. Textural characterization revealed a strong increase in the specific surface area and a complete change of the shape of primary particles substituting La3+ by Sr2+. The strong lowering of the temperature at conversion 20% for the La0.7Sr0.3Co(1−y)FeyO3 samples can be explained by these changes. X photoelectron spectra obtained with our procedure evidenced very high amount of O electrophilic species for the La0.7Sr0.3Co(1−y)FeyO3 samples. These species able to activate hydrocarbons could be the active sites. The partial substitution of cobalt by iron has only a limited effect on the textural properties and the amount of O species. However, Raman spectroscopy revealed a strong dynamic structural distortion by Jahn–Teller effect and Mössbauer spectroscopy evidenced the presence of Fe4+ cations in the iron containing samples. These structural modifications could improve the reactivity of the active sites explaining the better specific activity rate of the La0.7Sr0.3Co0.8Fe0.2O3 sample. Finally, an additional improvement of catalytic properties was obtained by the addition of 5% of cobalt cations in the solution of preparation. As evidenced by Raman mappings and TEM images, this method of preparation allowed to well-dispersed small Co3O4 particles that are very efficient for total oxidation of toluene with good thermal stability contrary to bulk Co3O4.  相似文献   

9.
In this research, we studied the first cycle characteristics of Li[Ni1/3Co1/3Mn1/3]O2 charged up to 4.7 V. Properties, such as valence state of the transition metals and crystallographic features, were analyzed by X-ray absorption spectroscopy and X-ray and neutron diffractions. Especially, two plateaus observed around 3.75 and 4.54 V were investigated by ex situ X-ray absorption spectroscopy. XANES studies showed that the oxidation states of transition metals in Li[Ni1/3Co1/3Mn1/3]O2 are mostly Ni2+, Co3+ and Mn4+. Based on neutron diffraction Rietveld analysis, there is about 6% of all nickel divalent (Ni2+) ions mixed with lithium ions (cation mixing). Meanwhile, it was found that the oxidation reaction of Ni2+/Ni4+ is related to the lower plateau around 3.75 V, but that of Co3+/Co4+ seems to occur entire range of x in Li1−x[Ni1/3Co1/3Mn1/3]O2. Small volume change during cycling was attributed to the opposite variation of lattice parameter “c” and “a” with charging-discharging.  相似文献   

10.
Cathode active materials with a composition of LiNi0.9Co0.1O2 were synthesized by a solid-state reaction method at 850 °C using Li2CO3, NiO or NiCO3, and CoCO3 or Co3O4, as the sources of Li, Ni, and Co, respectively. Electrochemical properties, structure, and microstructure of the synthesized LiNi0.9Co0.1O2 samples were analyzed. The curves of voltage vs. x in LixNi0.9Co0.1O2 for the first charge–discharge and the intercalated and deintercalated Li quantity Δx were studied. The destruction of unstable 3b sites and phase transitions were discussed from the first and second charge–discharge curves of voltage vs. x in LixNi0.9Co0.1O2. The LiNi0.9Co0.1O2 sample synthesized from Li2CO3, NiO, and Co3O4 had the largest first discharge capacity (151 mA h/g), with a discharge capacity deterioration rate of −0.8 mA h/g/cycle (that is, a discharge capacity increasing 0.8 mA h/g per cycle).  相似文献   

11.
Activity and selectivity of selective CO oxidation in an H2-rich gas stream over Co3O4/CeO2/ZrO2, Ag/CeO2/ZrO2, and MnO2/CeO2/ZrO2 catalysts were studied. Effects of the metaloxide types and metaloxide molar ratios were investigated. XRD, SEM, and N2 physisorption techniques were used to characterize the catalysts. All catalysts showed mesoporous structure. The best activity was obtained from 80/10/10 Co3O4/CeO2/ZrO2 catalyst, which resulted in 90% CO conversion at 200°C and selectivity greater than 80% at 125°C. Activity of the Co3O4/CeO2/ZrO2 catalyst increased with increase in Co3O4 molar ratio.  相似文献   

12.
Electrochemical and thermal properties of Co3(PO4)2- and AlPO4-coated LiNi0.8Co0.2O2 cathode materials were compared. AlPO4-coated LiNi0.8Co0.2O2 cathodes exhibited an original specific capacity of 170.8 mAh g−1 and had a capacity retention (89.1% of its initial capacity) between 4.35 and 3.0 V after 60 cycles at 150 mA g−1. Co3(PO4)2-coated LiNi0.8Co0.2O2 cathodes exhibited an original specific capacity of 177.6 mAh g−1 and excellent capacity retention (91.8% of its initial capacity), which was attributed to a lithium-reactive Co3(PO4)2 coating. The Co3(PO4)2 coating material could react with LiOH and Li2CO3 impurities during annealing to form an olivine LixCoPO4 phase on the bulk surface, which minimized any side reactions with electrolytes and the dissolution of Ni4+ ions compared to the AlPO4-coated cathode. Differential scanning calorimetry results showed Co3(PO4)2-coated LiNi0.8Co0.2O2 cathode material had a much improved onset temperature of the oxygen evolution of about 218 °C, and a much lower amount of exothermic-heat release compared to the AlPO4-coated sample.  相似文献   

13.

Abstract  

We demonstrate a supercritical CO2 (scCO2) deposition method to synthesize mesostructured Co3O4 with crystalline walls using SBA-15 as the hard template. By variation of the scCO2 pressure, randomly organized nanorods or a highly ordered mesoporous structure of Co3O4 is obtained after only one filling operation. The catalytic tests show that the randomly organized Co3O4 nanorods display excellent activity for CO oxidation with the complete conversion of CO even at room temperature, while neither the ordered mesoporous nor bulk Co3O4 is active at this low-temperature, demonstrating the important role of Co3O4 morphology in catalysis.  相似文献   

14.
Mesoporous Co3O4 (meso-Co3O4) and Co3O4 nanoparticles supported on mesoporous silica SBA-15 (Co/SBA-15) were prepared by hydrothermal synthesis and an impregnation method, respectively. Although the as-prepared meso-Co3O4 had mesopores and a higher surface area comparable to that of Co/SBA-15, its catalytic activity for N2O decomposition was much lower than that of Co3O4/SBA-15. The low catalytic activity of meso-Co3O4 mainly stems from the drastic decrease of the meso-Co3O4 surface area under the reaction condition used. On the other hand, Co/SBA-15 maintained its high surface area and mesopores with the aid of a robust silica support. This finding indicates that Co3O4 supported by a support is much more stable and efficient than meso-Co3O4 under N2O decomposition reaction conditions.  相似文献   

15.
Cobalt oxide modified SBA-15, KIT-5 and KIT-6 mesoporous silicas with different pore size/pore entrances have been synthesized by a conventional wet impregnation method using cobalt nitrate as the precursor. The modified materials were characterized by N2-physisorption, XRD, TEM-EDX, XPS, FT-IR, UV–vis and TPR-TG with hydrogen. Their catalytic activities in total oxidation of ethyl acetate were evaluated. A good correlation was observed between the catalytic activity, and the presence of spinel-type Co3O4 in the materials. Supports with larger mesopores facilitated the formation of such easily reducible spinel particles. However, the interconnectivity of the mesopores and the uniformity of the channel dimensions also had an influence on the catalytic activity, implying that mass-transfer effects, especially in the case of supports with cage-like mesopores.  相似文献   

16.
LiNi1/3Co1/3Mn1/3O2 cathode materials have been coated with Al2O3 nano-particles using sol-gel processing to improve its electrochemical properties. The X-ray diffraction (XRD) pattern of the as-prepared Al2O3 nano-particles was indexed to the cubic structure of the γ-Al2O3 phase and had an average size of ∼4 nm. The XRD showed that the structure of LiNi1/3Co1/3Mn1/3O2 was not affected by the Al2O3 coating. However, the Al2O3 coatings on LiNi1/3Co1/3Mn1/3O2 improved the cyclic life performance and rate capability without decreasing its initial discharge capacity. These electrochemical properties were also compared with those of LiAlO2-coated LiNi1/3Co1/3Mn1/3O2 cathode material. The electrochemical impedance spectroscopy (EIS) was studied to understand the enhanced electrochemical properties of the Al2O3-coated LiNi1/3Co1/3Mn1/3O2 compared to uncoated LiNi1/3Co1/3Mn1/3O2.  相似文献   

17.
Fe2O3 is a promising oxygen carrier for hydrogen production in the chemical-looping process. A set of kinetic studies on reduction with CH4, CO and H2 respectively, oxidation with water and oxygen containing Ar for chemical-looping hydrogen production was conducted. Fe2O3 (20 wt.%)/ZrO2 was prepared by a co-precipitation method. The main variables in the TGA (thermogravimetric analyzer) experiment were temperatures and gas concentrations. The reaction kinetics parameters were estimated based on the experimental data. In the reduction by CH4, CO and H2, the reaction rate changed near FeO. Changes in the reaction rate due to phase transformation were observed at low temperature and low gas concentration during the reduction by CH4, but the phenomenon was not remarkable for the reduction by CO and H2. The reduction rate achieved using CO and H2 was relatively faster than achieved using CH4. The Hancock and Sharp method of comparing the kinetics of isothermal solid-state reactions was applied. A phase boundary controlled model (contacting sphere) was applied to the reduction of Fe2O3 to FeO by CH4, and a different phase boundary controlled model (contacting infinite slab) was fit well to the reduction of FeO to Fe by CH4. The reduction of Fe2O3 to Fe by CO and H2 can be described by the former phase boundary controlled model (contacting sphere). This phase boundary controlled model (contacting sphere) also fit well for the oxidation of Fe to Fe3O4 by water and FeO to Fe2O3 by oxygen containing Ar. These kinetics data could be used to design chemical-looping hydrogen production systems.  相似文献   

18.
Feng-Yim Chang  Ming-Yen Wey 《Fuel》2010,89(8):1919-1927
SO2 and HCl are major pollutants emitted from waste incineration processes. Both pollutants are difficult to remove completely and can enter the catalytic reactor. In this work, the effects of SO2 and HCl on the performance of Rh/Al2O3 and Rh-Na/Al2O3 catalysts for NO removal were investigated in simulated waste incineration conditions. The characterizations of the catalysts were analyzed by BET, SEM/EDS, XRD, and ESCA. Experimental results indicated the 1%Rh/Al2O3 catalyst was significantly deactivated for NO and CO conversions when SO2 and HCl coexisted in the flue gas. The addition of between 2 and 10 wt.% Na promoted the activity of the 1%Rh/Al2O3 catalyst for NO removal, but decreased the CO oxidation and BET surface area. The catalytic activity for NO removal was inhibited by HCl as a result of the formation of RhCl3. Adding Na to the Rh/Al2O3 catalyst decreased the inhibition of SO2 because of the formation of Na2SO4, which was observed in the XRD and ESCA analyses. SEM mapping/EDS showed that more S was residual on the surface of the Rh-Na/Al2O3 catalyst than Cl.  相似文献   

19.
A number of supported metal oxide catalysts were screened for their catalytic performance for the oxidation of carbon black (CB; a model diesel soot) using NO2 as the main oxidant. It was found that contact between the carbon and catalyst was a key factor in determining the rate of oxidation by NO2. Oxides with low melting points, such as Re2O7, MoO3 and V2O5 showed higher activities than did Fe3O4 and Co3O4. The activities of MoO3 and V2O5 on various supporting materials were also examined. MoO3/SiO2 was the most active catalyst among the supported MoO3 examined, whereas, V2O5/MCM-41 showed the highest activity among the supported V2O5. Different performances of the supported MoO3 catalysts were explained by the interaction of MoO3 with the supports: a strong MoO3/support interaction may result in a poor mobility of MoO3 and a poor activity for oxidation of carbon by NO2. The high activity of V2O5/MCM-41 was associated with its catalysis of the oxidation of SO2 by NO2 to form SO3, which substantially promotes oxidation of carbon by NO2. Addition of transition metal oxides or sulfates to supported MoO3 and V2O5 was also investigated. Combining MoO3 or V2O5 with CuO on SiO2, adding VOSO4 to MoO3/SiO2 or MoO3/Al2O3 and adding TiOSO4 or CuSO4 to V2O5/Al2O3 improved the catalytic performance.  相似文献   

20.
The deactivation mechanism of Pd supported on silica and mesoporous silica (SBA-15) using CO2-expanded methanol as solvent was studied in the direct synthesis of H2O2 in batch and semi-continuous batch reactor tests as well as its hydrogenolysis. Fresh and used catalysts were characterized by TPR and CO chemisorption. The results evidence the presence of deactivation, which can be correlated to the loss of accessible active metal surface area due to sintering of Pd, but there is also an effect of the presence of the ordered mesoporous structure and of the reaction conditions. The higher concentration of H2 in solution in semi-continuous batch reactor tests with respect to batch reactor tests leads to a more relevant deactivation in Pd-SiO2 with respect to Pd-SBA-15, but a higher initial activity, due to the fact that H2 accelerates the reduction of the Pd species which are less reducible in Pd-SiO2 than in Pd-SBA-15. Pd-SBA-15 shows a higher H2O2 selectivity and productivity with respect to Pd-SiO2 in batch reactor tests, related to the presence of easier reducible Pd species. Another difference is related to the different mechanism of sintering. On the SBA-15 support, due to the presence of the ordered mesoporosity, the Pd particles migrate into the SBA-15 channels forming elongated 1D-type particles. In Pd-SiO2 catalyst, instead, the sintering of the Pd particles leads to large aggregates of Pd particles in the range of 20-25 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号