首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
The short-channel performance of compressively strained Si0.77Ge0.23 pMOSFETs with HfSiOx/TiSiN gate stacks has been characterized alongside that of unstrained-Si pMOSFETs. Strained-SiGe devices exhibit 80% mobility enhancement compared with Si control devices at an effective vertical field of 1 MV middotcm-1. For the first time, the on-state drain-current enhancement of intrinsic strained-SiGe devices is shown to be approximately constant with scaling. Intrinsic strained-SiGe devices with 100-nm gate lengths exhibit 75% enhancement in maximum transconductance compared with Si control devices, using only ~20% Ge (~0.8% strain). The origin of the loss in performance enhancement commonly observed in strained-SiGe devices at short gate lengths is examined and found to be dominated by reduced boron diffusivity and increased parasitic series resistance in compressively strained SiGe devices compared with silicon control devices. The effective channel length was extracted from I- V measurements and was found to be 40% smaller in 100-nm silicon control devices than in SiGe devices having the same lithographic gate lengths, which is in good agreement with the metallurgical channel length predicted by TCAD process simulations. Self-heating due to the low thermal conductivity of SiGe is shown to have a negligible effect on the scaled-device performance. These findings demonstrate that the significant on-state performance gains of strained-SiGe pMOSFETs compared with bulk Si devices observed at long channel lengths are also obtainable in scaled devices if dopant diffusion, silicidation, and contact modules can be optimized for SiGe.  相似文献   

2.
The authors report on fully strained Si0.75Ge0.25 metal-oxide-semiconductor capacitors with HfSiO2 high-k gate dielectric and TaN metal gate fabricated on Si substrates. Fully strained Si0.75Ge0.25 films are directly grown on Si substrates below the critical thickness. HfSiO2 high-k gate dielectrics exhibit an equivalent oxide thickness of 13-18 Å with a permittivity of 17.7 and gate leakage current density lower than SiO2 gate oxides by >100×. Interfacial oxide of the HfSiO2/Si0.75Ge0.25 stack consists primarily of SiO2 with a small amount of Ge and Hf. High performance SiGe field effect transistors are highly manufacturable with excellent electrical characteristics afforded by the fully strained HfSiO2/SiGe gate stack.  相似文献   

3.
Short channel p-type metal-oxide-semiconductor field effect transistors (MOSFETs) with GdScO3 gate dielectric were fabricated on a quantum well strained Si/strained Si0.5Ge0.5/strained Si heterostructure on insulator. Amorphous GdScO3 layers with a dielectric constant of 24 show small hysteresis and low density of interface states. All devices show good performance with a threshold voltage of 0.585 V, commonly used for the present technology nodes, and high Ion/Ioff current ratios. We confirm experimentally the theoretical predictions that the drive current and the transconductance of the biaxially strained (1 0 0) devices are weakly dependent on the channel orientation. The transistor’s hole mobility, extracted using split C-V method on long channel devices, indicates an enhancement of 90% (compared to SiO2/SOI transistors) at low effective field, with a peak value of 265 cm2/V s. The enhancement is however, only 40% at high electrical fields. We demonstrate that the combination of GdScO3 dielectric and strained SiGe layer is a promising solution for gate-first high mobility short channel p-MOSFETs.  相似文献   

4.
A thin body (fully depleted) strained SGOI device structure (FDSGOI), and a strained SiGe channel layer on SOI, were fabricated using scaled high-κ gate dielectrics and metal gate technology. The uniaxial strain effect and corresponding drive current enhancement reported by Irisawa et al. [1] for narrow-width devices was investigated on these structures. Although the strained FDSGOI device structure exhibited reduced off-state leakage compared to thicker body devices, and long-channel drive current enhancement under uniaxial strain, the loss of drive current enhancement at short channel length led to uncompetitive ION-IOFF characteristics. The SiGe on SOI structure showed the highest long-channel drive current enhancement (nearly 3×) in the narrowest devices, and also showed a significant reduction in off-state current. This trend was maintained down to the shortest channel lengths studied here and resulted in ION-IOFF characteristics that were competitive with contemporary uniaxial strained Si channel devices.  相似文献   

5.
We introduce a strained‐SiGe technology adopting different thicknesses of Si cap layers towards low power and high performance CMOS applications. By simply adopting 3 and 7 nm thick Si‐cap layers in n‐channel and p‐channel MOSFETs, respectively, the transconductances and driving currents of both devices were enhanced by 7 to 37% and 6 to 72%. These improvements seemed responsible for the formation of a lightly doped retrograde high‐electron‐mobility Si surface channel in nMOSFETs and a compressively strained high‐hole‐mobility Si0.8Ge0.2 buried channel in pMOSFETs. In addition, the nMOSFET exhibited greatly reduced subthreshold swing values (that is, reduced standby power consumption), and the pMOSFET revealed greatly suppressed 1/f noise and gate‐leakage levels. Unlike the conventional strained‐Si CMOS employing a relatively thick (typically > 2 µm) SixGe1‐x relaxed buffer layer, the strained‐SiGe CMOS with a very thin (20 nm) Si0.8Ge0.2 layer in this study showed a negligible self‐heating problem. Consequently, the proposed strained‐SiGe CMOS design structure should be a good candidate for low power and high performance digital/analog applications.  相似文献   

6.
Ultra thin HfAlOx high-k gate dielectric has been deposited directly on Si1−xGex by RF sputter deposition. The interfacial chemical structure and energy-band discontinuities were studied by using X-ray photoelectron spectroscopy (XPS), time of flight secondary ion mass spectroscopy (TOF-SIMS) and electrical measurements. It is found that the sputtered deposited HfAlOx gate dielectric on SiGe exhibits excellent electrical properties with low interface state density, hysteresis voltage, and frequency dispersion. The effective valence and conduction band offsets between HfAlOx (Eg = 6.2 eV) and Si1−xGex (Eg = 1.04 eV) were found to be 3.11 eV and 2.05 eV, respectively. In addition, the charge trapping properties of HfAlOx/SiGe gate stacks were characterized by constant voltage stressing (CVS).  相似文献   

7.
The electrical characterization of Ge pMOSFETs having <1 1 0> and <1 0 0> orientations with gate lengths of 3 μm have been demonstrated with a Si-compatible process flow. Employment of <1 0 0> orientation in Ge pMOSFETs without incorporation of strain provided ∼10% enhancement in effective hole mobility and drive current when compared to <1 1 0> oriented regular transistors. In this fabrication technology, the effective hole mobility improves from 190 cm2/V s for <1 1 0> devices to 210 cm2/V s for the <1 0 0> oriented Ge devices at room temperature, which is ∼2 times the hole mobility of Si pFET devices. This study also presents first time investigation of post metallization anneal (PMA) at 350 °C in H2 ambient for <1 0 0> Ge pMOSFETs. The overall performance of the devices has been enhanced by 15% after performing PMA. It is likely attributed to a strong decrease of Dit, improving the transistor performance. These results indicate that the <1 0 0> Ge pMOSFETs could be a viable candidate for future low voltage high speed CMOS applications.  相似文献   

8.
《Microelectronic Engineering》2007,84(9-10):1861-1864
We have developed a process for forming an ultra-thin HfSiOx interfacial layer (HfSiOx-IL) for high-k gate stacks. The HfSiOx-IL was grown by the solid-phase reaction between HfO2 and Si-substrate performed by repeating the sequence of ALD HfO2 deposition and RTA. The HfSiOx-IL grown by this method enables the formation of very uniform films consisting of a few mono-layers, and the dielectric constant of the HfSiOx-IL is about 7. The FUSI-NiSi/HfO2 gate stacks with HfSiOx-IL have achieved 0.6 nm EOT, a very low gate leakage currents between 1 A/cm2 and 5 × 10−2 A/cm2, an excellent subthreshold swing of 66mV/dec, and a high peak mobility of 160 cm2/Vs compared to the reference samples without HfSiOx-IL. These results indicate that the HfSiOx-IL has a good quality compared to the SiO2 interfacial layer grown by oxygen diffusion through HfO2 films.  相似文献   

9.
We report material and electrical properties of tungsten silicide metal gate deposited on 12 in. wafers by chemical vapor deposition (CVD) using a fluorine free organo-metallic (MO) precursor. We show that this MOCVD WSix thin film deposited on a high-k dielectric (HfSiO:N) shows a N+ like behavior (i.e. metal workfunction progressing toward silicon conduction band). We obtained a high-k/WSix/polysilicon “gate first” stack (i.e. high thermal budget) providing stable equivalent oxide thickness (EOT) of ∼1.2 nm, and a reduction of two decades in leakage current as compared to SiO2/polysilicon standard stack. Additionally, we obtained a metal gate with an equivalent workfunction (EWF) value of ∼4.4 eV which matches with the +0.2 eV above Si midgap criterion for NMOS in ultra-thin body devices.  相似文献   

10.
This paper presents an experimental investigation of Low-frequency Noise (LFN) measurements on Germanium-On-Insulator (GeOI) PMOS transistors processed on different wafers. The wafers are obtained by Ge enrichment technique and by Smart Cut™ technology. The slow oxide trap densities of back interface are used as a figure of merit to evaluate the process. The Smart Cut™ process is evaluated by studying GeOI pMOSFETs, and the enrichment process by studying Si1−xGex (x = 25% and 35%) pMOSFETs. The buried oxide is used as a back gate for experimental purposes. The extracted values are of the same order of magnitude for both processes and are close to those of state of art buried oxide SiO2/Si interfaces, demonstrating that both the Smart Cut™ and enrichment techniques produce equally good quality interfaces.  相似文献   

11.
Interfacial microstructure and electrical properties of HfAlOx films deposited by RF magnetron sputtering on compressively strained Si83Ge17/Si substrates were investigated. HfSiOx-dominated amorphous interfacial layer (IL) embedded with crystalline HfSix nano-particles were revealed by high resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy depth profile study. About 280 mV-wide clockwise capacitance-voltage(C-V) hysteresis for the HfAlOx film deposited in Ar + N2 mixed ambient was observed. Oxygen vacancies and interfacial defects in the HfSiOx IL, as well as trapped charges in the boundaries between the HfSix nano-particles and surrounded amorphous HfSiOx may be responsible for the large C-V hysteresis.  相似文献   

12.
Electrical properties of epitaxial single-crystalline Si/SiGe axial heterostructure nanowires (NWs) on Si〈1 1 1〉 substrate were measured by contacting individual NWs with a micro-manipulator inside an scanning electron microscope. The NWs were grown by incorporating compositionally graded Si1−xGex segments of a few nm thicknesses in the Si NWs by molecular beam epitaxy. The I-V characteristics of the Si/SiGe heterostructure NWs showed Ohmic behavior. However, the resistivity of a typical heterostructure NW was found to be significantly low for the carrier concentration extracted from the simulated band diagram. Similarly grown pure Si and Ge NWs showed the same behavior as well, although the I-V curve of a typical Si NW was rectifying in nature instead of Ohmic. It was argued that this enhanced electrical conductivities of the NWs come from the current conduction through their surface states and the Ge or Si/SiGe NWs are more strongly influenced by the surface than the Si ones.  相似文献   

13.
The hole mobilities of SiGe and SiGeC channel pMOSFETs fabricated on ultrathin silicon-on-insulator substrates are investigated and compared with reference Si channel devices. The total thickness of the fully depleted Si/SiGe(C)/Si body structure is /spl sim/ 25 nm. All devices demonstrated a near ideal subthreshold behavior, and the drive current and mobility were increased with more than 60% for SiGe and SiGeC channels. When comparing SIMOX and UNIBOND substrates, no significant difference could be detected.  相似文献   

14.
From quantum simulations of both capacitance and current measurements, the main physical parameters (dielectric thickness and permittivity, doping levels) of hafnium based (HfSiOx and HfO2) gate oxide capacitors have been extracted. Three kinds of gates (n+-polysilicon, totally silicided (TOSI) NiSi and metal TiN gates) have been studied. In the case of thick (EOT between 11.1 and 12.3 nm) HfSiOx gate oxides or thin (EOT inferior to 2 nm) HfO2 stacks with n+-polysilicon or TiN gates, a good agreement between simulations and experimental data is obtained. Electron tunneling currents are prevalent in these stacks except for the specific case of TiN/HfO2 stacks in p-substrate accumulation mode. In this case, electron and hole tunneling transparencies become of the same order of magnitude. Hole transport contribution can no more be neglected and should be taken into account in simulations.  相似文献   

15.
Compressively strained Ge long channel ring-type pMOSFETs with high-kappa Si/SiO2/HfO2/TiN gate stacks are fabricated on Si0.2Ge0.8 virtual substrates. Effective oxide thickness is approximately 1.4 nm with low gate leakage current. A peak hole mobility of 640 cm2/ Vldrs and up to a four times enhancement over the Si/SiO2 universal curve are observed. Parasitic conduction within the Si-cap layers degrades the mobility at large vertical fields, although up to a 2.5 times enhancement over universal remains at a field of 0.9 MV/cm.  相似文献   

16.
The thermal stability of fully silicided (FUSI) NiSi with arsenic or boron doping on silicon on insulator (SOI) was investigated. After the stacks were subjected to a typical back-end of line (BEOL) thermal annealing in a N2 ambient, abnormal oxidation of As doped FUSI NiSi stacks is observed by X-ray photoelectron spectroscopy (XPS), and confirmed by high-resolution transmission electron microscopy (HRTEM). X-ray diffraction (XRD) results show Ni-rich phases like Ni3Si are formed due to abnormal oxidation of FUSI NiSi. In contrast to As doped stacks, no phase transformation nor abnormal oxidation are observed for B doped stacks under similar annealing. However, backside secondary ion mass spectrometry (SIMS) results indicate B penetration through a 3 nm SiON layer into the Si channel after N2 annealing for 4 h at 400 °C. There is no evidence for Ni diffusion into the Si channel for B doped stacks. However, Ni penetration into the Si channel is observed for As doped stacks due to the enhancement of abnormal oxidation of FUSI NiSi.  相似文献   

17.
Negative-bias temperature instability (NBTI) on high-k metal-gate SiGe p-channel MOSFETs has been examined. SiGe p-MOSFETs shows reduced interface states and enhanced NBTI reliability compared to their Si p-channel control devices as evidenced by experimental data. Impact of NBTI reliability on digital and RF circuits has been also examined using extracted fresh and stressed BSIM4 model parameters in circuit simulation. High-k metal-gate SiGe pMOSFETs demonstrate less inverter pull-up delay, smaller noise figure of a cascode low-noise amplifier, and larger output power and power-added efficiency than their Si counterparts when subject to NBTI stress.  相似文献   

18.
Effective metal work function, Φm,eff, and oxide charge, Qox, were determined on MOS capacitors with slanted high-κ dielectric. Φm,eff and Qox were extracted using flat-band voltage shift versus equivalent oxide thickness data, both deduced from the capacitance–voltage measurements. Slanted HfSiOx dielectric (initial thickness was 9 nm) was prepared by gradual etching in HF-based solution. As a metal electrode, thin Ru-films were deposited by MOCVD-derived technique—Atomic Vapor Deposition® on the slanted HfSiOx as well as SiO2 dielectrics. The Φm,eff of Ru was found to be 4.74 and 4.81 eV for Ru/HfSiOx and Ru/SiO2 gate stacks, respectively. Ultraviolet photoelectron spectroscopy yields the work function of 4.62 eV in agreement with the capacitance–voltage data. We also studied the I–V characteristics of the Ru/HfSiOx/Si MOS capacitors. The barrier height was found to be constant within the HfSiOx bulk.  相似文献   

19.
在利用分子束外延方法制备SiGe pMOSFET中引入了低温Si技术.通过在Si缓冲层和SiGe层之间加入低温Si层,提高了SiGe层的弛豫度.当Ge主分为20%时,利用低温Si技术生长的弛豫Si1-xGex层的厚度由UHVCVD制备所需的数微米降至400nm以内,AFM测试表明其表面均方粗糙度(RMS)小于1.02nm.器件测试表明,与相同制备过程的体硅pMOSFET相比,空穴迁移率最大提高了25%.  相似文献   

20.
This study investigates the effects of rapid thermal annealing (RTA) in nitrogen ambient on HfO2 and HfSiOx gate dielectrics, including their electrical characteristics, film properties, TDDB reliability and breakdown mechanism. The optimal temperature for N2 RTA treatment is also investigated. The positive oxide trap charges (oxygen vacancies) in HfO2 and HfSiOx dielectric films can be reduced by the thermal annealing, but as the annealing temperature increased, many positive oxide trap charges (oxygen vacancies) with shallow or deep trap energy level will be formed in the grain boundaries, degrading the electrical characteristics, and changing the breakdown mechanism. We believe that variation in the number of positive oxide trap charges (oxygen vacancies) with shallow or deep trap energy levels is the main cause of the CV shift and difference in the breakdown behaviors between HfO2 and HfSiOx dielectrics. With respect to CV characteristics and TDDB reliability, the optimal temperature for N2 RTA treatment is in the range 500-600 °C and 800-900 °C, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号