首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The stress-induced leakage current in Hf-doped Ta2O5 layers (7; 10 nm) under constant voltage stress at gate injection was investigated in order to assess the mechanisms of conduction, the traps involved and the effect of Hf doping. The amount of Hf is found to affect the conduction mechanisms, the temperature dependence of the leakage current and the current response to the stress. A significant leakage current increase is observed only when the stress voltage and/or stress time exceed the corresponding threshold values, where the charge trapping at the pre-existing traps dominates below and defect generation above these threshold values. The energy levels of the traps responsible for the current transport are estimated. The stress effect on dominant conduction mechanisms appears quite weak, and the nature of the traps controlling the current transport before and after the stress seems to be nearly identical. The results indicate that the constant voltage stress affects the pre-existing traps in Hf-doped Ta2O5 and modifies their parameters, but there is no evidence for stress-induced generation of traps with completely new nature different from oxygen-vacancy related defects.  相似文献   

2.
The electrical characteristics of HfO2-Ta2O5 mixed stacks under constant current stress (CCS) at gate injection with 20 mA/cm2 and stressing times of 50 and 200 s have been investigated. A very weak effect of the stress on the global dielectric constant, on fast and slow states in the stack as well as on the dominant conduction mechanism is detected. The most sensitive parameter to the CCS is the leakage current. The stress-induced leakage current (SILC) is voltage and thickness dependent. The pre-existing traps govern the trapping kinetics and are a key parameter to evaluate the stress response. Two processes - positive charge build-up and new bulk traps generation - are suggested to be responsible for SILC: the domination of one of them depends on both the film thickness and the stressing time. The positive charge build-up is localized close to the gate electrode implying gate-induced defects could be precursors for it. It is established that unlike the case of single SiO2 layer, the bulk traps closer to the gate electrode control SILC in the mixed Ta2O5-HfO2-based capacitors.  相似文献   

3.
The effect of microwave treatment at room temperature on the leakage current and mechanisms of conductivity in mixed HfO2-Ta2O5 (10 nm) stacks has been studied by temperature dependent (20-100 °C) current-voltage characteristics. It was established that the short term irradiation (∼6 s) affects the electrically active centers in the mixed oxide, provokes modification of the dominant conduction mechanism at about and above 1 MV/cm and improves the temperature stability of capacitors manifesting as low level of current at high temperatures (current decrease up to two orders of magnitude at 100 °C after the treatment is detected). The traps involved in the conduction processes in pre- and post-irradiation capacitors are identified. The longer exposure (10-15 s) is effective in a significant reduction of leakage current (up to 3-4 orders of magnitude in wide range of applied voltages). The potential of microwave treatment at room temperature as technological step for improving the temperature stability of leakage current in high-k stacked capacitors is discussed.  相似文献   

4.
We have investigated electrical properties of laminated atomic layer deposited films: ZrO2-Ta2O5, ZrO2-Nb2O5-Ta2O5, ZrO2-TaxNb1−xO5 and Ta2O5-ZrxNbyOz. Even though the capacitances of laminates were often higher compared to films of constituent materials with similar thickness, considerably higher charge storage factors, Q, were achieved only when tetragonal ZrO2 was stabilized in ZrO2-Ta2O5 laminate and when the laminate thickness exceeded 50 nm. The decreased Q values in the case of most laminates were the result of increased leakage currents. In the case of thinner films only Ta2O5-ZrxNbyOz stack possessed capacitance density and Q value higher than reference HfO2. Concerning the conduction mechanisms, in the case of thinner films, the Ta2O5 or TaxNb1−xO5 apparently controlled the leakage either by Richardson-Schottky emission or Poole-Frenkel effect.  相似文献   

5.
Lightly Al-doped Ta2O5 films (10;15 nm) obtained by rf sputtering have been studied with respect to their dielectric and electrical properties. The formed metal-high-k dielectric-semiconductor capacitors have been characterized by capacitance-voltage and temperature-dependent current-voltage characteristics. It was established that the introduction of small amount (5 at.%) Al into the matrix of Ta2O5 improves dielectric constant, introduces negative oxide charge, suppresses deep oxygen-vacancy centers in Ta2O5 but creates shallow traps and changes the dominant conduction mechanism in the stacks. The doping produces more leaky films at room temperature and lower current at high temperature as compared to the case of pure Ta2O5. It is concluded that the strong contribution of tunneling processes through shallow traps in the conductivity of doped films could explain the observed current degradation at room temperature and its improved temperature stability at high temperatures. The energy levels of the traps responsible for the current transport are estimated.  相似文献   

6.
Tantalum pentoxide (Ta2O5) deposited by pulsed DC magnetron sputtering technique as the gate dielectric for 4H-SiC based metal-insulator-semiconductor (MIS) structure has been investigated. A rectifying current-voltage characteristic was observed, with the injection of current occurred when a positive DC bias was applied to the gate electrode with respect to the n type 4H-SiC substrate. This undesirable behavior is attributed to the relatively small band gap of Ta2O5 of around 4.3 eV, resulting in a small band offset between the 4H-SiC and Ta2O5. To overcome this problem, a thin thermal silicon oxide layer was introduced between Ta2O5 and 4H-SiC. This has substantially reduced the leakage current through the MIS structure. Further improvement was obtained by annealing the Ta2O5 at 900 °C in oxygen. The annealing has also reduced the effective charge in the dielectric film, as deduced from high frequency C-V measurements of the Ta2O5/SiO2/4H-SiC capacitors.  相似文献   

7.
We report the effect of annealing on electrical and physical characteristics of HfO2, HfSixOy and HfOyNz gate oxide films on Si. Having the largest thickness change of 0.3 nm after post deposition annealing (PDA), HfOyNz shows the lowest leakage current. It was found for both as-grown and annealed structures that Poole-Frenkel conduction is dominant at low field while Fowler-Nordheim tunneling in high field. Spectroscopic ellipsometry measurement revealed that the PDA process decreases the bandgap of the dielectric layers. We found that a decreasing of peak intensity in the middle HfOyNz layer as measured by Tof-SIMS may suggest the movement of N toward the interface region between the HfOyNz layer and the Si substrate during the annealing process.  相似文献   

8.
Al2O3, HfO2, and composite HfO2/Al2O3 films were deposited on n-type GaN using atomic layer deposition (ALD). The interfacial layer of GaON and HfON was observed between HfO2 and GaN, whereas the absence of an interfacial layer at Al2O3/GaN was confirmed using X-ray photoelectron spectroscopy and transmission electron microscopy. The dielectric constants of Al2O3, HfO2, and composite HfO2/Al2O3 calculated from the C-V measurement are 9, 16.5, and 13.8, respectively. The Al2O3 employed as a template in the composite structure has suppressed the interfacial layer formation during the subsequent ALD-HfO2 and effectively reduced the gate leakage current. While the dielectric constant of the composite HfO2/Al2O3 film is lower than that of HfO2, the composite structure provides sharp oxide/GaN interface without interfacial layer, leading to better electrical properties.  相似文献   

9.
The influence of the rapid thermal annealing (RTA) in vacuum at 1000 °C on the leakage current characteristics and conduction mechanisms in thermal Ta2O5 (7-40 nm) on Si has been studied. It was established that the effect of RTA depends on both the initial parameters of the films (defined by the oxidation temperature and film thickness) and annealing time (15-60 s). The RTA tends to change the distribution and the density of the traps in stack, and this reflects on the dielectric and leakage properties. The thinner the film and the poorer the oxidation, the more susceptible the layer to heating. The short (15 s) annealing is effective in improving the leakage characteristics of poorly oxidized samples. The RTA effect, however, is rather deleterious than beneficial, for the thinner layers with good oxygen stoichiometry. RTA modifies the conduction mechanism of Ta2O5 films only in the high-field region. The annealing time has strong impact on the appearance of a certain type of reactions upon annealing resulting to variation of the ratio between donors and traps into Ta2O5, causing different degree of compensation, and consequently to domination of one of the two mechanisms at high fields (Schottky emission or Poole-Frenkel effect). Trends associated with simultaneous action of annealing and generation of traps during RTA processing, and respectively the domination of one of them, are discussed.  相似文献   

10.
Interaction of HfxTayN metal gate with SiO2 and HfOxNy gate dielectrics has been extensively studied. Metal-oxide-semiconductor (MOS) device formed with SiO2 gate dielectric and HfxTayN metal gate shows satisfactory thermal stability. Time-of-flight secondary ion mass spectroscopy (TOF-SIMS) analysis results show that the diffusion depths of Hf and Ta are less significant in SiO2 gate dielectric than that in HfOxNy. Compared to HfOxNy gate dielectric, SiO2 shows better electrical properties, such as leakage current, hysteresis, interface trap density and stress-induced flat-band voltage shift. With an increase in post metallization annealing (PMA) temperature, the electrical characteristics of the MOS device with SiO2 gate dielectric remain almost unchanged, indicating its superior thermal and electrical stability.  相似文献   

11.
AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors (MOSHFETs) with Al2O3 gate oxide which was deposited by atomic layer deposition (ALD) were fabricated and their performance was then compared with that of AlGaN/GaN MOSHFETs with HfO2 gate oxide. The capacitance (C)-voltage (V) curve of the Al2O3/GaN MOS diodes showed a lower hysteresis and lower interface state density than the C-V curve of the HfO2/GaN diodes, indicating better quality of the Al2O3/GaN interface. The saturation of drain current in the ID-VGS relation of the Al2O3 AlGaN/GaN MOSHFETs was not as pronounced as that of the HfO2 AlGaN/GaN MOSHFETs. The gate leakage current of the Al2O3 MOSHFET was five to eight orders of magnitude smaller than that of the HfO2 MOSHFETs.  相似文献   

12.
The conduction mechanisms and the microstructure of rf sputtered Ta2O5 on Si, before and after oxygen annealing at high temperatures (873, 1123 K; 30 min) have been investigated. The as-deposited and annealed at 873 K layers are amorphous whereas crystalline Ta2O5 (orthorhombic β-Ta2O5 phase) was obtained after O2 treatment at 1123 K. The results (electrical, X-ray diffraction, transmission electron microscopy) reveal the formation of an interfacial ultrathin SiO2 layer under all technological regimes used. The higher (493 K) substrate temperature during deposition stimulates the formation of amorphous rather than crystalline SiO2. It is found that the oxygen heating significantly reduces the oxide charge (Qf<1010 cm−2) and improves the breakdown characteristics (the effect is more pronounced for the higher annealing temperature). It is accompanied by an increase of the effective dielectric constant (up to 37 after 1123 K treatment). It is established that the influence of the oxygen treatment on the leakage current is different depending on the film thickness, namely: a beneficial effect for the thinner and a deterioration of leakage characteristics for thicker (80 nm) films. A leakage current density as low as 10−7 A/cm2 at 1 MV/cm applied field for 26 nm annealed layers has been obtained. The current reduction is considered to be due to a removal by annealing of certain structural nonperfections present in the initial layers. Generally, the results are discussed in terms of simultaneous action of two opposite and competing processes taking place at high temperatures––a real annealing of defects and an appearance of a crystal phase and/or a neutral traps generation. The contribution of the neutral traps also is involved to explain the observed weaker charge trapping in the as-fabricated films compared to the annealed ones.The conduction mechanism of the as-deposited films is found to be of Poole–Frenkel (PF) type for a wide range of applied fields. A change of the conduction mechanism for the annealed films at medium fields (0.8–1.3 MV/cm) is established. This transition from PF process to the Schottky emission limited current is explained with an annealing of bulk traps (oxygen vacancies and nonperfect bonds). It is concluded that the dominant conduction mechanism in the intermediate fields can be effectively controlled by appropriate technological steps.  相似文献   

13.
Hafnium oxide (HfO2) films were deposited on Si substrates with a pre-grown oxide layer using hafnium chloride (HfCl4) source by surface sol-gel process, then ultrathin (HfO2)x(SiO2)1−x films were fabricated due to the reaction of SiO2 layer with HfO2 under the appropriate reaction-anneal treatment. The observation of high-resolution transmission electron microscopy indicates that the ultrathin films show amorphous nature. X-ray photoelectron spectroscopy analyses reveal that surface sol-gel derived ultrathin films are Hf-Si-O alloy instead of HfO2 and pre-grown SiO2 layer, and the composition was Hf0.52Si0.48O2 under 500 °C reaction-anneal. The lowest equivalent oxide thickness (EOT) value of 0.9 nm of film annealed at 500 °C has been obtained with small flatband voltage of −0.31 V. The experimental results indicate that a simple and feasible solution route to fabricate (HfO2)x(SiO2)1−x composite films has been developed by means of combination of surface sol-gel and reaction-anneal treatment.  相似文献   

14.
The effect of various electrodes (Al, W, TiN) deposited by evaporation (Al) and sputtering (W, TiN) on the electrical characteristics of thermal thin film (15-35 nm) Ta2O5 capacitors has been investigated. The absolute level of leakage currents, breakdown fields, mechanism of conductivity, dielectric constant values are discussed in the terms of possible reactions between Ta2O5 and electrode material as well as electrode deposition process-induced defects acting as electrically active centers. The dielectric constant values are in the range 12-26 in dependence on both Ta2O5 thickness and gate material. The results show that during deposition of TiN and Al a reaction that worsens the properties of Ta2O5 occurs while there is not an indication for detectable reduction of Ta2O5 when top electrode is W, and the leakage current is 5-7 orders of magnitude lower as compared to Al and TiN-electroded capacitors. The high level of leakage current for TiN and Al gate capacitors are related to the radiation defects generated in Ta2O5 during sputtering of TiN, and damaged interface at the electrode due to a reaction between Al and Ta2O5, respectively. It is demonstrated that the quality of the top electrode affects the electrical characteristics of the capacitors and the sputtered W is found to be the best. The sputtered W gate provides Ta2O5 capacitors with a good quality: the current density <7 × 10−10 A/cm2 at 1 V (0.7 MV/cm, 15 nm thick Ta2O5). W deposition is not accompanied by an introduction of a detectable damage leading to a change of the properties of the initial as-grown Ta2O5 as in the case of TiN electrode. Damage introduced during TiN sputtering is responsible for current deterioration (high leakage current) and poor breakdown characteristics. It is concluded that the sputtered W top electrode is a good candidate as a top electrode of storage capacitors in dynamic random access memories giving a stable contact with Ta2O5, but sputtering technique is less suitable (favorable) for deposition of TiN as a metal electrode due to the introduction of radiation defects causing both deterioration of leakage current and poor breakdown characteristics.  相似文献   

15.
The degradation of Ta2O5-based (10 nm) stacked capacitors with different top electrodes, (Al, W, Au) under constant current stress has been investigated. The variation of electrical characteristics after the stress is addressed to gate-induced defects rather than to poor-oxidation related defects. The main wearout parameter in Ta2O5 stacks is bulk-related and a generation only of bulk traps giving rise to oxide charge is observed. The post-stress current–voltage curves reveal that stress-induced leakage current (SILC) mode occurs in all capacitors and the characteristics of pre-existing traps define the stress response. The results are discussed in terms of simultaneous action of two competing processes: negative charge trapping in pre-existing electron traps and stress-induced positive charge generation, and the domination of one of them in dependence on both the stress level and the gate used. The charge build-up and the trapping/detrapping processes modify the dominant conduction mechanism and the gate-induced defects are precursors for device degradation. It is concluded that the impact of the metal gate on the ultimate reliability of high-k stacked capacitors should be strongly considered.  相似文献   

16.
Charge pumping and low frequency noise measurements for depth profiling have been studied systematically using a set of gate stacks with various combinations of IL and HfO2 thicknesses. The distribution of generated traps after HCI and PBTI stress was also investigated. The drain-current power spectral density made up all of the traps of IL in 0 < z < TIL and the traps of HfO2 in TIL < z < THK. The traps near the Si/SiO2 interface dominated the 1/f noise at higher frequencies, which is common in SiO2 dielectrics. For the HfO2/SiO2 gate stack, however, the magnitude of the 1/f noise did not significantly change after HCI and PBTI because of more traps in the bulk HfO2 film than at the bottom of the interface.  相似文献   

17.
HfO2 dielectric layers were grown on the p-type Si (100) substrate by metal-organic molecular beam epitaxy (MOMBE). Hafnium-tetra-butoxide, Hf(O·t-C4H9)4 was used as a Hf precursor and Argon gas was used as a carrier gas. The thickness of the HfO2 film and intermediate SiO2 layer were measured by scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). The properties of the HfO2 layers were evaluated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), high frequency (HF) capacitance-voltage (C-V) measurement, and current-voltage (I-V) measurement. C-V and I-V measurements have shown that HfO2 layer grown by MOMBE has a high dielectric constant (k) of 20-22 and a low-level of leakage current density. The growth rate is affected by various process variables such as substrate temperature, bubbler temperature, Ar and O2 gas flows and growth time. Since the ratio of O2 and Ar gas flows are closely correlated, the effect of variations in O2/Ar flow ratio on growth rate is also investigated using statistical modeling methodology.  相似文献   

18.
In this study, the structural and electrical properties of amorphous and crystalline Ta2O5 thin films deposited on p-type Si by low pressure metalorganic chemical vapour deposition from a Ta(OC2H5)5 source have been investigated. The as-deposited layers are amorphous, whereas crystalline Ta2O5 (hexagonal phase) was obtained after post-deposition O2-annealing at 800°C. Physico-chemical analysis of our layers shows that the O2-treatment leads to the growth of a thin (1 nm) interfacial SiO2 layer between Ta2O5 and Si but, contrary to other studies, was not sufficient to reduce the level of carbon and hydrogen contaminants. Crystalline Ta2O5 shows better leakage current properties than amorphous Ta2O5. The conduction mechanism in amorphous Ta2O5 is clearly attributed to the Poole–Frenkel effect with a barrier height separating the traps from the conduction band of 0.8 eV. For crystalline Ta2O5, the situation remains unclear since no simple law can be invoked due to the presence of the SiO2 interlayer: a double conduction process based on a tunnelling effect in SiO2 followed by a trap-modulated mechanism in Ta2O5 may be invoked. From capacitance–voltage measurements, the permittivity was found to be 25 for amorphous samples, but values ranging from 56 to 59 were found for crystalline layers, suggesting a high anisotropic character.  相似文献   

19.
The influence of Hf-doping on the leakage currents and conduction mechanisms in Ta2O5 stacks is investigated. The current conduction mechanisms as well as the traps participating in them are identified by temperature dependent current–voltage measurements. A strong dependence of the dominant conduction mechanism on the doping and the layer thickness is established. Hf-doping alters substantially the dominant mechanism of conductivity in pure Ta2O5. Conduction in Hf-doped Ta2O5 is performed through shallower traps as compared to the pure Ta2O5, which results in a higher leakage current in the former stacks. A certain trap can assist in different conduction processes depending on the layer thickness and the applied field. It is found that Hf-doping passivates oxygen vacancies in Ta2O5 and the deep traps level associated with this defect is not observed in Hf-doped samples. The origin of the detected traps is also commented.  相似文献   

20.
The effect of the oxidation temperature (673-873 K) on the microstructural and electrical properties of thermal Ta2O5 thin films on Si has been studied. Auger electron spectroscopy and X-ray photoelectron spectroscopy results revealed that the films are non-stoichiometric in the depth; an interfacial transition layer between tantalum oxide and Si substrate, containing presumably SiO2 was detected. It has been found by X-ray diffraction that the amorphous state of Ta2O5 depends on both the oxidation temperature and the thickness of the films—the combination of high oxidation temperature (>823 K) and thickness smaller than 50 nm is critical for the appearance of a crystal phase. The Ta2O5 layers crystallize to the monoclinic phase and the temperature of the phase transition is between 773 and 823 K for the thinner layers (<50 nm) and very close to 873 K for the thicker ones. The electrical characterization (current/voltage; capacitance/voltage) reveals that the optimal oxidation temperature for achieving the highest dielectric constant (∼32) and the lowest leakage current (10−8 A/cm2 at 1 MV/cm applied field) is 873 K. The results imply that the poor oxidation related defects are rather the dominant factor in the leakage current than the crystallization effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号