首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
High κ HfOxNy film was deposited on amorphous InGaZnO (a-IGZO) by radio-frequency reactive sputtering using an HfO2 target in nitrogen plus argon ambience, the electrical characteristics and reliability of a-IGZO metal-insulator-semiconductor (MIS) capacitors were investigated. Experimental results indicate that the nitrogen incorporation into HfO2 can produce a strong nitride interfacial barrier layer, thus lead to reducing the interface state density, suppressing the hysteresis voltage, and decreasing the gate-leakage current. Improved performance has been achieved for HfOxNy gate dielectric a-IGZO MIS capacitors, with a interface state density of 5.1 × 1011 eV−1 cm−2, a gate-leakage current density of 3.9 × 10−5 A/cm2 at Vfb + 1 V, an equivalent permittivity of 24, and a hysteresis voltage of 105 mV. Moreover, the enhanced reliability of Al/HfOxNy/a-IGZO MIS capacitor is observed with a small degradation of electrical characteristics after a high field stressing at 10 MV/cm for 3600 s.  相似文献   

2.
Pentacene organic thin-film transistors (OTFTs) using LaxTa(1−x)Oy as gate dielectric with different La contents (x = 0.227, 0.562, 0.764, 0.883) have been fabricated and compared with those using Ta oxide or La oxide. The OTFT with La0.764Ta0.236Oy can achieve a carrier mobility of 1.21 cm2 V−1s−1s, which is about 40 times and two times higher than those of the devices using Ta oxide and La oxide, respectively. As supported by XPS, AFM and noise measurement, the reasons lie in that La incorporation can suppress the formation of oxygen vacancies in Ta oxide, and Ta content can alleviate the hygroscopicity of La oxide, resulting in more passivated and smoother dielectric surface and thus larger pentacene grains, which lead to higher carrier mobility.  相似文献   

3.
We have investigated electrical properties of laminated atomic layer deposited films: ZrO2-Ta2O5, ZrO2-Nb2O5-Ta2O5, ZrO2-TaxNb1−xO5 and Ta2O5-ZrxNbyOz. Even though the capacitances of laminates were often higher compared to films of constituent materials with similar thickness, considerably higher charge storage factors, Q, were achieved only when tetragonal ZrO2 was stabilized in ZrO2-Ta2O5 laminate and when the laminate thickness exceeded 50 nm. The decreased Q values in the case of most laminates were the result of increased leakage currents. In the case of thinner films only Ta2O5-ZrxNbyOz stack possessed capacitance density and Q value higher than reference HfO2. Concerning the conduction mechanisms, in the case of thinner films, the Ta2O5 or TaxNb1−xO5 apparently controlled the leakage either by Richardson-Schottky emission or Poole-Frenkel effect.  相似文献   

4.
Three examples are given, which show that ion implantation and electron irradiation can drastically modify the electrical properties of SiC and SiC-based MOS capacitors. (1) It is demonstrated that sulphur ions (S+) implanted into 6H-SiC act as double donors with ground states ranging from 310 to 635 meV below the conduction bandedge. (2) Co-implantation of nitrogen (N+) - and silicon (Si+) - ions into 4H-SiC leads to a strong deactivation of N donors. Additional experiments with electron (e)-irradiated 4H-SiC samples (E(e) = 200 keV) support the idea that this deactivation is due to the formation of an electrically neutral (Nx-VC, y)-complex. (3) Implantation of a surface-near Gaussian profile into n-type 4H-SiC followed by a standard oxidation process leads to a strong reduction of the density of interface traps Dit close to the conduction bandedge in n-type 4H-SiC/SiO2 MOS capacitors.  相似文献   

5.
Effect of annealing temperature on the characteristics of sol–gel-driven Ta ax La(1?a)x O y thin film spin-coated on Si substrate as a high-k gate dielectric was studied. Ta ax La(1?a)x O y thin films with different amounts of a were prepared (as-prepared samples). X-ray diffraction measurements of the as-prepared samples indicated that Ta0.3x La0.7x Oy film had an amorphous structure. Therefore, Ta0.3x La0.7x O y film was chosen to continue the present studies. The morphology of Ta0.3x La0.7x O y films was studied using scanning electron microscopy and atomic force microscopy techniques. The obtained results showed that the size of grain boundaries on Ta0.3x La0.7x O y film surfaces was increased with increasing annealing temperature. Electrical and optical characterizations of the as-prepared and annealed films were investigated as a function of annealing temperature using capacitance–voltage (CV) and current density–voltage (JV) measurements and the Tauc method. The obtained results demonstrated that Ta0.3x La0.7x O y films had high dielectric constant (≈27), wide band gap (≈4.5 eV), and low leakage current density (≈10?6 A/cm2 at 1 V).  相似文献   

6.
We report on high-k TixSi1−xO2 thin films prepared by RF magnetron co-sputtering using TiO2 and SiO2 targets at room temperature. The TixSi1−xO2 thin films exhibited an amorphous structure with nanocrystalline grains of 3-30 nm having no interfacial layers. The XPS analyses indicate that stoichiometric TiO2 phases in the TixSi1−xO2 films increased due to stronger Ti-O bond with increasing TiO2 RF powers. In addition, the electrical properties of the TixSi1−xO2 films became better with increasing TiO2 RF powers, from which the maximum value of the dielectric constant was estimated to be ∼30 for the samples with TiO2 RF powers of 200 and 250 W. The transmittance of the TixSi1−xO2 films was above 95% with optical bandgap energies of 4.1-4.2 eV. These results demonstrate a potential that the TixSi1−xO2 thin films were applied to a high-k gate dielectric in transparent thin film transistors as well as metal-oxide-semiconductor field-effect transistors.  相似文献   

7.
The change in the thickness and chemical states of the interfacial layer and the related electrical properties in Ta2O5 films with different annealing temperatures were investigated. The high-resolution transmission electron microscopy and X-ray photoelectron spectroscopy analyses revealed that the 700 °C-annealed Ta2O5 film remained to be amorphous and had the thinnest interfacial layer which was caused by Ta-silicate decomposition to Ta2O5 and SiO2. In addition, the electrical properties were improved after annealing treatments. Our results suggest that an annealing treatment at 700 °C results in the highest capacitance and the lowest leakage current in Ta2O5 films due to the thinnest interfacial layer and non-crystallization.  相似文献   

8.
Tantalum pentoxide (Ta2O5) deposited by pulsed DC magnetron sputtering technique as the gate dielectric for 4H-SiC based metal-insulator-semiconductor (MIS) structure has been investigated. A rectifying current-voltage characteristic was observed, with the injection of current occurred when a positive DC bias was applied to the gate electrode with respect to the n type 4H-SiC substrate. This undesirable behavior is attributed to the relatively small band gap of Ta2O5 of around 4.3 eV, resulting in a small band offset between the 4H-SiC and Ta2O5. To overcome this problem, a thin thermal silicon oxide layer was introduced between Ta2O5 and 4H-SiC. This has substantially reduced the leakage current through the MIS structure. Further improvement was obtained by annealing the Ta2O5 at 900 °C in oxygen. The annealing has also reduced the effective charge in the dielectric film, as deduced from high frequency C-V measurements of the Ta2O5/SiO2/4H-SiC capacitors.  相似文献   

9.
The effect of various electrodes (Al, W, TiN) deposited by evaporation (Al) and sputtering (W, TiN) on the electrical characteristics of thermal thin film (15-35 nm) Ta2O5 capacitors has been investigated. The absolute level of leakage currents, breakdown fields, mechanism of conductivity, dielectric constant values are discussed in the terms of possible reactions between Ta2O5 and electrode material as well as electrode deposition process-induced defects acting as electrically active centers. The dielectric constant values are in the range 12-26 in dependence on both Ta2O5 thickness and gate material. The results show that during deposition of TiN and Al a reaction that worsens the properties of Ta2O5 occurs while there is not an indication for detectable reduction of Ta2O5 when top electrode is W, and the leakage current is 5-7 orders of magnitude lower as compared to Al and TiN-electroded capacitors. The high level of leakage current for TiN and Al gate capacitors are related to the radiation defects generated in Ta2O5 during sputtering of TiN, and damaged interface at the electrode due to a reaction between Al and Ta2O5, respectively. It is demonstrated that the quality of the top electrode affects the electrical characteristics of the capacitors and the sputtered W is found to be the best. The sputtered W gate provides Ta2O5 capacitors with a good quality: the current density <7 × 10−10 A/cm2 at 1 V (0.7 MV/cm, 15 nm thick Ta2O5). W deposition is not accompanied by an introduction of a detectable damage leading to a change of the properties of the initial as-grown Ta2O5 as in the case of TiN electrode. Damage introduced during TiN sputtering is responsible for current deterioration (high leakage current) and poor breakdown characteristics. It is concluded that the sputtered W top electrode is a good candidate as a top electrode of storage capacitors in dynamic random access memories giving a stable contact with Ta2O5, but sputtering technique is less suitable (favorable) for deposition of TiN as a metal electrode due to the introduction of radiation defects causing both deterioration of leakage current and poor breakdown characteristics.  相似文献   

10.
We report the effect of annealing on electrical and physical characteristics of HfO2, HfSixOy and HfOyNz gate oxide films on Si. Having the largest thickness change of 0.3 nm after post deposition annealing (PDA), HfOyNz shows the lowest leakage current. It was found for both as-grown and annealed structures that Poole-Frenkel conduction is dominant at low field while Fowler-Nordheim tunneling in high field. Spectroscopic ellipsometry measurement revealed that the PDA process decreases the bandgap of the dielectric layers. We found that a decreasing of peak intensity in the middle HfOyNz layer as measured by Tof-SIMS may suggest the movement of N toward the interface region between the HfOyNz layer and the Si substrate during the annealing process.  相似文献   

11.
This paper presents the studies to determine hardness and elastic modulus of intermetallic compound (IMC) layers in lead-free solder joints using nanoindentation technique. Two types of surface finishes, i.e., organic solderability preservative (OSP) and electrolytic Ni/Au on Cu pad, with Sn3.5Ag0.5Cu solder balls of 330 μm in diameter are studied, and the intermetallic layers are identified to be Cu6Sn5, Cu3Sn and (Niy,Cu1−y)3Sn4. The thicknesses of these IMC layers are only few microns at reflowed conditions (less than 2.3 μm). Therefore, probing mechanical properties of thinner IMCs using nanoindentation techniques poses immense difficulties and challenges. In this study, taper-mounted samples are used rather than standard cross-sectional mounted for solder joints. This taper sample gives a larger area for nanoindentation measurements. The elastic modulus and hardness of IMC layers are determined based on the parameter P/S2 (load/stiffness2) as a function of the indentation depth to minimise the effects of underlying UBM or solder materials. The modulus of Cu6Sn5, Cu3Sn, (Cux,Ni1−x)6Sn5 and (Niy,Cu1−y)3Sn4 layer are found to be 112.0 ± 5.1 GPa, 135.5 ± 4.3 GPa, 165.0 ± 11.3 GPa and 136.8 ± 5.8 GPa; whereas the hardness values are found to be 6.8 ± 0.4 GPa, 6.6 ± 0.5 GPa, 7.2 ± 0.9 GPa and 8.2 ± 1.0 GPa, respectively. Thus, the IMC layers in the order of increasing hardness and modulus are found to be Cu6Sn5, Cu3Sn, (Cux,Ni1−x)6Sn5 and (Niy,Cu1−y)3Sn4.  相似文献   

12.
We have used a sol-gel spin-coating process to fabricate a new metal-insulator-metal capacitor comprising 10-nm thick binary hafnium-zirconium-oxide (HfxZr1−xO2) film on a flexible polyimide (PI) substrate. The surface morphology of this HfxZr1−xO2 film was investigated using atomic force microscopy and scanning electron microscopy, which confirmed that continuous and crack-free film growth had occurred on the PI. After oxygen plasma pre-treatment and subsequent annealing at 250 °C, the film on the PI substrate exhibited a low leakage current density of 3.22 × 10−8 A/cm2 at −10 V and maximum capacitance densities of 10.36 fF/μm2 at 10 kHz and 9.42 fF/μm2 at 1 MHz. The as-deposited sol-gel film was oxidized when employing oxygen plasma at a relatively low temperature (∼250 °C), thereby enhancing the electrical performance.  相似文献   

13.
The temperature dependence of the dielectric properties of high Q polymer-based composites was discussed in terms of microstructural differences with various filler contents. Liquid coatable high Q polymer-based composites with 3-4× improvement in dielectric constant and precisely controlled temperature coefficient of capacitance (TCC) were developed with Ta2O5 as the inorganic filler. The base polymer showed a negative TCC of −250 ppm/°C from room temperature to 125 °C. Measurement of TCC with samples containing Ta2O5 greater than 30 vol.% showed TCC of ±50 ppm/°C with moderate capacitance density, whereas no detectable improvement in the TCC was observed in samples having 20 vol.% Ta2O5. The electron micrographs of this low filler content sample gave a clear indication of clustering, i.e. particle agglomeration. The homogeneity of the particle distribution was more pronounced in the sample with 40 vol.% Ta2O5.  相似文献   

14.
The electrical characteristics of HfO2-Ta2O5 mixed stacks under constant current stress (CCS) at gate injection with 20 mA/cm2 and stressing times of 50 and 200 s have been investigated. A very weak effect of the stress on the global dielectric constant, on fast and slow states in the stack as well as on the dominant conduction mechanism is detected. The most sensitive parameter to the CCS is the leakage current. The stress-induced leakage current (SILC) is voltage and thickness dependent. The pre-existing traps govern the trapping kinetics and are a key parameter to evaluate the stress response. Two processes - positive charge build-up and new bulk traps generation - are suggested to be responsible for SILC: the domination of one of them depends on both the film thickness and the stressing time. The positive charge build-up is localized close to the gate electrode implying gate-induced defects could be precursors for it. It is established that unlike the case of single SiO2 layer, the bulk traps closer to the gate electrode control SILC in the mixed Ta2O5-HfO2-based capacitors.  相似文献   

15.
High-power broad-area InGaNAs/GaAs quantum-well (QW) edge-emitting lasers on GaAs substrates in the 1200 nm range are reported. The epitaxial layers of the InGaNAs/GaAs QW laser wafers were grown on n+-GaAs substrates by using metal-organic chemical vapor deposition (MOCVD). The thickness of the InGaNAs/GaAs QW layers is 70 Å/1200 Å. The indium content (x) of the InxGa1−xNyAs1−y QW layers is estimated to be 0.35-0.36, while the nitrogen content (y) is estimated to be 0.006-0.009. More indium content (In) and nitrogen content (N) in the InGaNAs QW layer enables the laser emission up to 1300 nm range. The epitaxial layer quality, however, is limited by the strain in the grown layer. The devices were made with different ridge widths from 5 to 50 μm. A very low threshold current density (Jth) of 80 A/cm2 has been obtained for the 50 μm × 500 μm LD. A number of InGaNAs/GaAs epi-wafers were made into broad-area LDs. A maximum output power of 95 mW was measured for the broad-area InGaNAs/GaAs QW LDs. The variations in the output powers of the broad-area LDs are mainly due to strain-induced defects the InGaNAs QW layers.  相似文献   

16.
The influence of the rapid thermal annealing (RTA) in vacuum at 1000 °C on the leakage current characteristics and conduction mechanisms in thermal Ta2O5 (7-40 nm) on Si has been studied. It was established that the effect of RTA depends on both the initial parameters of the films (defined by the oxidation temperature and film thickness) and annealing time (15-60 s). The RTA tends to change the distribution and the density of the traps in stack, and this reflects on the dielectric and leakage properties. The thinner the film and the poorer the oxidation, the more susceptible the layer to heating. The short (15 s) annealing is effective in improving the leakage characteristics of poorly oxidized samples. The RTA effect, however, is rather deleterious than beneficial, for the thinner layers with good oxygen stoichiometry. RTA modifies the conduction mechanism of Ta2O5 films only in the high-field region. The annealing time has strong impact on the appearance of a certain type of reactions upon annealing resulting to variation of the ratio between donors and traps into Ta2O5, causing different degree of compensation, and consequently to domination of one of the two mechanisms at high fields (Schottky emission or Poole-Frenkel effect). Trends associated with simultaneous action of annealing and generation of traps during RTA processing, and respectively the domination of one of them, are discussed.  相似文献   

17.
Cubic crystalline silicon-carbon nitride (Si1−x−yCxNy) films have been grown successfully using various carbon sources by rapid-thermal chemical-vapor deposition (RTCVD). The characteristics of the Si1−x−yCxNy films grown with SiH3CH3, C2H4, and C3H8 are examined and compared by x-ray photoelectron spectroscopy (XPS) spectra, scanning electron microscopy (SEM) images, and transmission electron microscopy (TEM) patterns. The XPS spectra show that the differences of chemical composition and chemical-bonding state are co-related to the C bonding type of the different carbon source. The SEM images and TEM analysis indicate that the better Si1−x−yCxNy film can be obtained using C3H8 gas as the carbon source. In addition, correlations between the growing stages to the microstructure of the cubic-crystalline Si1−x−yCxNy films have been illustrated in detail.  相似文献   

18.
The effect of the oxidation temperature (673-873 K) on the microstructural and electrical properties of thermal Ta2O5 thin films on Si has been studied. Auger electron spectroscopy and X-ray photoelectron spectroscopy results revealed that the films are non-stoichiometric in the depth; an interfacial transition layer between tantalum oxide and Si substrate, containing presumably SiO2 was detected. It has been found by X-ray diffraction that the amorphous state of Ta2O5 depends on both the oxidation temperature and the thickness of the films—the combination of high oxidation temperature (>823 K) and thickness smaller than 50 nm is critical for the appearance of a crystal phase. The Ta2O5 layers crystallize to the monoclinic phase and the temperature of the phase transition is between 773 and 823 K for the thinner layers (<50 nm) and very close to 873 K for the thicker ones. The electrical characterization (current/voltage; capacitance/voltage) reveals that the optimal oxidation temperature for achieving the highest dielectric constant (∼32) and the lowest leakage current (10−8 A/cm2 at 1 MV/cm applied field) is 873 K. The results imply that the poor oxidation related defects are rather the dominant factor in the leakage current than the crystallization effects.  相似文献   

19.
The compositional changes of InxGa1−xP graded buffer inserted between GaP substrate and subsequently grown In0.36Ga0.64P homojunction LED structure were investigated by Raman spectroscopy. The indium content of InxGa1−xP interlayers was increased in eight steps with thickness of 300 nm and constant compositional change ΔxIn between the steps. The properties of InxGa1−xP graded buffer along the structure cross-section have been studied by Raman back scattering method and the changes in GaP LO and TO phonons were investigated. Raman shift of 13 cm−1 in GaP-like LO1 phonon was measured on beveled [100]surface for compositional change of InxGa1−xP layer in the range of 0<xIn<0.32. The measurements on the cleaved edge of the sample in [011] direction revealed a strong TO phonon at 366 cm−1 and weak LO phonon peak at 405 cm−1 in GaP substrate. By reaching the graded InxGa1−xP region the intensity of TO phonon decreases and appearance of considerable TO1 phonon shift up to 350 cm−1 for In content xIn=0.16 was observed. For upper graded layers with xIn from 0.16 to 0.24 the position of GaP-like TO1 was constant and can be ascribed to relaxation of lattice mismatched thin InxGa1−xP graded upper layers in the structure.  相似文献   

20.
Extended Abstract Thin film tantalum oxide capacitors have been used extensively in the electronic and the telecommunication industry.1 One of the most important parameters that measures the quality of the capacitor is its leakage current. In spite of a large amount of effort to study the conduction mechanism in Ta2O5 films, even the basic question of whether conduction is electrode-limited or bulk-limited has not been satisfactorily answered.2 In a previous publication,3 it was shown that the conduction current in a metal-Ta2O5-metal device is independent of the work function of the metal electrode, for r-f sputtered Ta2O5 films.4 Furthermore, we have shown that there exists drastic differences in the magnitude of the conduction current through M-I-M devices with similar Ta205/metal interfaces but progressively different bulk oxide.5 Therefore, the conduction mechanism cannot be electrode-limited even if interface irregularities are postulated to exist.6 In this talk, direct evidence that the conduction mechanism is indeed bulk-limited will be presented. Detailed results will be published elsewhere.5  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号