共查询到18条相似文献,搜索用时 78 毫秒
1.
针对差分进化算法传统变异策略在全局收敛鲁棒性和搜索效率上不能达到一个很好的折衷,并且算法的操作算子固定,导致搜索效率低、易早熟收敛等问题,文中在差分进化算法变异策略性能分析的基础上,提出了一种基于锦标赛选择的变异策略。该策略采用“锦标赛选择”对随机选取的变异向量排序选出基向量,差分向量选择有利于搜索的方向并对其 “强化”,以提高收敛速率和维持种群多样性;同时操作算子采用随机正态缩放因子F和时变交叉概率因子CR,以平衡局部搜索和全局搜索;最后,利用4个典型Benchmarks测试函数对改进算法进行测试。实验结果表明,该改进型差分进化算法能有效避免早熟收敛,较好地提高算法的全局收敛能力和搜索效率。 相似文献
2.
为了克服差分进化算法容易出现早熟和收敛速度慢的问题,提出了一种混合差分进化算法.该算法在趋药性差分进化算法(CDE)的基础上,通过对较优个体进行变异操作,维护了种群多样性、避免早熟;通过将较差的个体与较优个体进行杂交,提高了开采能力、加快了收敛速度.基于这两种策略,算法的开采能力与探索能力达到了平衡.用该算法解决标准函数优化问题,并将仿真结果与其他算法进行比较,数值结果表明该文算法具有较快的收敛速度和很强的跳出局部最优的能力. 相似文献
3.
灰狼优化(Grey Wolf Optimization,GWO)算法是近年被提出的一种新型智能优化算法,具有收敛速度快和优化精度高的特点,但对于一些复杂优化问题易陷入局部最优。差分进化(Differential Evolution,DE)算法的全局搜索能力强,但其性能对参数敏感,且局部搜索能力不足。为了发挥二者各自的优点并弥补存在的缺陷,提出了一种灰狼优化与差分进化的混合优化算法。首先使用嵌入趋优算子的GWO算法搜索,以便在更短的过程中获得更高的优化精度和更快的收敛速度;然后采用自适应调节参数的差分进化策略来进一步提高算法对复杂优化函数的寻优性能,从而获得一种高性能的混合优化算法,以便能更高效地解决各种函数优化问题。对12个高维函数的优化结果表明,与标准GWO,ACS,DMPSO及SinDE相比,新的混合优化算法不仅具有更好的收敛速度和优化性能,而且具有更好的普适性,更适用于解决各种函数优化问题。 相似文献
4.
5.
针对差分进化算法易于陷入早熟收敛和局部搜索较慢的问题,提出了一种类似Nelder-Mead方法中的反射操作的变异策略,称为反射变异策略。不同于其他基本的差分策略,提出的变异策略具有明确的差分方向,具有更快的局部收敛速度。为了避免因差分方向的贪婪性而导致算法早熟的可能性增加,反射变异策略使用4个随机的个体完成一次变异操作。将基于反射变异策略的子代生成策略和自适应参数方法组合形成了基于反射变异策略的自适应差分进化算法(RMADE)。使用12个函数测试了RMADE的性能并与其他算法进行比较,结果表明RMADE具有较快的收敛速度和较好的全局探测能力,进而体现了反射变异策略的价值。 相似文献
6.
为增强生物地理学优化算法(biogeography-based optimization,BBO)的优化能力并克服其不能很好平衡开发能力与避免陷入局部最优解之间的矛盾,提出基于微扰动和混合变异的差分生物地理学优化算法(differential biogeography optimization algorithm ba... 相似文献
7.
针对多目标差分进化算法在求解问题时收敛速度慢和均匀性欠佳的问题,提出了一种改进的排序变异多目标差分进化算法(MODE-IRM)。该算法将参与变异的三个父代个体中的最优个体作为基向量,提高了排序变异算子的求解速度;另外,算法采用反向参数控制方法在不同的优化阶段动态调整参数值,进一步提高了算法的收敛速度;最后,引入了改进的拥挤距离计算公式进行排序操作,提高了解的均匀性。采用标准多目标优化问题ZDTl~ZDT4,ZDT6和DTLZ6~DTLZ7进行仿真实验:MODE-IRM在总体性能上均优于MODE-RMO和PlatEMO平台上的MOEA/D-DE、RM-MEDA以及IM-MOEA;在世代距离(GD)、反向世代距离(IGD)和间隔指标(SP)性能度量指标方面,MODE-IRM在所有优化问题上的均值和方差均明显小于MODE-RMO。实验结果表明MODE-IRM在收敛性和均匀性指标上明显优于对比算法。 相似文献
8.
基于差分进化和粒子群优化算法的混合优化算法 总被引:2,自引:1,他引:2
为了发挥差分进化和粒子群优化算法各自拥有的特点,并克服自身存在的问题,提出了一种混合优化算法(简称DPA).该算法首先利用差分进化的变异和选择算子产生新的群体,然后通过使用粒子群优化算法和交叉、选择算子进行局部搜索.在整个算法过程中,群体寻优范围先扩散再收缩,反复迭代渐进收敛.通过3个标准算例的测试表明,新的混合优化算法与差分进化和粒子群优化算法相比,具有收敛速度快、搜索能力强、鲁棒性好的特点. 相似文献
9.
加权变异策略动态差分进化算法 总被引:1,自引:0,他引:1
针对差分进化算法在解决高维优化问题时易早熟收敛、求解精度低和参数设置麻烦等问题,提出一种加权变异策略动态差分进化算法(WMDDE)。为了动态平衡全局搜索与局部搜索能力,跳出局部最优,将标准差分进化算法的变异策略DE/rand/1和DE/best/1进行加权组合,提出两种新的随机扰动加权变异算子。提出一种动态自适应调整缩放因子和交叉概率因子的策略,避免参数设置的麻烦,提高算法的稳定性。在11个Benchmark函数上的测试结果表明,新算法能有效避免早熟收敛,全局寻优能力强,且在高维时寻优速度、求解精度和稳定性均优于4种DE进化算法。 相似文献
10.
针对高维复杂函数的优化问题,提出了基于小生境的混沌变异差分进化算法(CNDE)。算法结合小生境策略,使子种群高效独立地进行搜索,并引入混沌变异进行精细的遍历搜索,在运行中根据迭代次数自动地调整交叉概率因子从而使搜索的初始阶段提高种群多样性,而在搜索后期加强局部搜索能力。对3种经典函数的测试表明,新算法不仅具有很强的全局搜索能力,而且能有效避免早熟收敛问题。 相似文献
11.
变异策略对差分进化算法(DE)算法的成功与否起到至关重要的作用.然而,方向信息在DE变异策略的设计当中并没有被充分地挖掘,且对于如何平衡进化速度和种群多样性这两者之间的矛盾也没有得到很好的解决方案.研究了个体在进化选择操作前后产生的差量信息在变异操作上的导向作用,提出了一种新的基于进化方向的变异策略“DE/current-to-pbest/1/Gvector”.同时,为了测试我们这种新的方向信息能否提高算法的优化能力,我们在自适应差分进化算法(JADE)的基础上提出了一种新的算法DVDE.对CEC2005常用的12个测试函数做了仿真实验,实验结果证明DVDE的算法性能平均优于其他5个目前来说性能最好的DE算法(JADE,SaDE,CoDE,jDE,EPSDE),特别是对于单峰函数,效果更为明显.实验结果也说明进化方向的加入对于提高算法的收敛速度以及保护种群的多样性避免算法过早陷入局部最优起到了较好的作用. 相似文献
12.
针对差分进化算法差分策略优化问题上的不足, 解决DE/best/1策略全局探测能力差, DE/rand/1局部搜索能力弱而带来的鲁棒性降低及陷入局部最优等问题, 本文在差分策略上进行改进, 并且加入邻域分治思想提高进化效率, 提出一种基于双种群两阶段变异策略的差分进化算法(TPSDE). 第一个阶段利用DE/best/1的优势对邻域向量划分完成的子种群区域进行局部优化, 第二个阶段借鉴DE/rand/1的思想实现全局优化, 最终两阶段向量加权得到最终变异个体使得算法避免了过早收敛和搜索停滞等问题的出现. 6个测试函数的仿真实验结果表明TPSDE在收敛速度、优化精度和鲁棒性方面都得到了明显改善. 相似文献
13.
求解多选择背包问题的改进差分演化算法 总被引:3,自引:0,他引:3
首先将差分演化算法(DEA)的演化机制归结为差异算子(DO)和选择算子(SO)的作用,然后基于离散域上的多选择背包问题(MCKP),通过重新定义DEA算法的差异算子中的三种基本运算,并采用个体正整数编码方法和处理非正常编码的快速微调策略,提出了一种求解MCKP问题的改进差分演化算法(MDEA),第一次将DEA用于求解组合最优化问题.对经典MCKP问题实例的计算表明:MDEA算法不但是可行的,而且是高效的. 相似文献
14.
人工萤火虫优化算法在寻找函数全局最优值时存在着收敛速度慢、易陷入局部最优、收敛成功率和计算精度低等缺点,为此,文中将人工鱼群算法的觅食行为嵌入到人工萤火虫算法,并与差分进化算法融合,提出一种基于人工萤火虫与差分进化的混合优化算法.最后,通过4个典型测试函数和1个应用实例进行测试,结果表明所提出的混合算法收敛速度快,计算精度高,其整体逼近性能比基本人工萤火虫和差分进化算法更优. 相似文献
15.
一种基于粒子群优化算法和差分进化算法的新型混合全局优化算法 总被引:4,自引:1,他引:4
提出一种基于粒子群算法(PSO)和差分进化算法(DE)相结合的新型混合全局优化算法——PSODE.该算法基于一种双种群进化策略,一个种群中的个体由粒子群算法进化而来,另一种群的个体由差分操作进化而来.此外,通过采用一种信息分享机制,在算法执行过程中两个种群中的个体可以实现协同进化.为了进一步提高PSODE算法的性能,摆脱陷入局部最优点,还采用了一种变异机制.通过4个标准测试函数的测试并与PSO和DE算法进行比较,证明本文提出的PSODE算法是一种收敛速度快、求解精度高、鲁棒性较强的全局优化算法. 相似文献
16.
求解函数优化问题的一种高效混合演化算法 总被引:2,自引:2,他引:2
在郭涛算法的基础上设计出了一种求解函数优化问题的高效混合演化算法。新算法的主要特点有两个:一是引入演化策略中的高斯变异算子,二是引入自适应搜索子空间。高斯变异算子对群体作正态分布微调,防止早熟;引入自适应搜索子空间使群体在演化至接近全局最优解时能自动缩小搜索范围,从而达到加速收敛的目的。测试函数表明,该算法正确高效,求解精度极高,指正了文献[3]中的错误,所求函数全局最小值优于文献[3]记录的最好结果。 相似文献
17.
差分进化是一种有效的优化技术,已成功用于多目标优化问题。但也存在Pareto最优集合的收敛慢和多样性差等问题。针对上述不足,本文提出了一种基于分解和多策略变异的多目标差分进化算法(MODE/DMSM)。该算法利用基于分解的方法将多目标优化问题分解为多个单目标优化问题;通过高效的非支配排序方法选择具有良好收敛性和多样性的解来指导差分进化过程;采用了多策略变异方法来平衡进化过程中收敛性和多样性。在ZDT和DTLZ的10个测试函数上的仿真结果表明,本文算法在Parato最优集合的收敛性和多样性优于其他六种代表性多目标优化算法。 相似文献
18.
针对差分进化算法在复杂优化问题求解时后期收敛速度慢、易陷入局部最优和参数设置繁琐等问题,提出一种基于新变异策略的动态自适应差分进化算法p-ADE.首先,新变异策略中通过利用种群的全局最优解和目标个体的历史最优解引导种群搜索方向,为下一代个体的生成引入更多有效的方向性信息,避免差分向量中个体随机选择导致的搜索盲目性.其次,为加快收敛速度、提高算法稳定性、避免参数设置的繁琐与不精确,提出一种参数动态自适应调整策略,动态平衡算法局部搜索与全局搜索间的关系,有效调节个体在进化过程中的变异程度.在10个Benchmark函数上的实验结果表明,p-ADE相对于多种先进DE优化策略和全局优化算法在收敛精度、速度和鲁棒性上均具有明显优势. 相似文献