首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary A new recycling technique has been developed. In this method, EPS (expanded polystyrene), generally called Styrofoam, is dissolved with natural solvent, d-limonene and electrospun. This method can economically produce the nanofibers. The electrospinning process produces a nonwoven mat of long polymer fibers with diameters in the range of 10–500 nm and high surface areas per unit mass. PS (Polystyrene) polymer dissolved in different solvents such as THF (Tetrahydrofuran), DMF (Dimethylformaide), and DMAc (Dimethylacetamide) etc. may all be electrospun into nanofibers. These solvents cause environmental problem and difficulty of process handling. Natural solvent, d-limonene is used for dissolving PS. PS nanofibers are produced with PS solution using d-Limonene. This paper describes the use of polystyrene (PS) nanofibers electrospun from recycled EPS solution dissolved in d-limonene. The electrospun polystyrene nanofiber diameters vary from 300 to 900 nm, with an average diameter of about 700 nm.  相似文献   

2.
To expand the application of electrospun fibers or electrosprayed beads, micro-nano hierarchical structures of polystyrene (PS) have been constructed through the adjustment of solvent, polymer concentration, environment humidity, electrospinning temperature, etc. Primary structures, such as fibers, beads and bead-on-string structure, as well as secondary structures, such as nanopores, nanopapilla and net-work structure, have been constructed. Solvent plays an important role in the construction of both primary structures and secondary structures. By using N,N-dimethylformamide (DMF), tetrahydrofuran (THF) and mixed solvent of DMF/THF, the micro-nano hierarchical structures can be controlled. Humidity is a key factor to the construction of secondary structures. The obtained fibers or beads have smooth surface at low humidity. While at high humidity, secondary structures tend to appear. For the PS/DMF system, vapor-induced phase separation may be the most pertinent mechanism to explain the formation of secondary structures. While for the PS/THF system, breath figure theory can explain the formation of uniform nanopores properly.  相似文献   

3.
The change of bead morphology formed on electrospun polystyrene fibers   总被引:1,自引:0,他引:1  
Polystyrene (PS) dissolved in the mixture of tetrahydrofuran (THF) and N,N-dimethyl formamide (DMF) was electrospun to prepare fibers of sub-micron in diameters. Electropinning parameters such as polymer concentration, applied voltage and tip-to-collector distance were controlled. From these parameters it was determined that while the surface tension of polymer solution had linear correlation with the critical voltage, throughput was dependent on electric conductivity. The electrospun PS fibers produced contained irregular beads and electrospinning certainly was enhanced with increasing DMF content. The bead concentration was also controlled by DMF content. The aspect ratio of the formed beads and the diameter of fibers were increased with increasing solution concentration. When PS was dissolved in only THF, an unexpected half hollow spheres (HHS) structure appeared. Also, different shape forms of PS non-woven mats have been prepared by controlling electrospinning parameters.  相似文献   

4.
The submicron fibers were prepared via electrospinning the styrene–isoprene–styrene (SIS) triblock copolymer from a pure solvent of tetrahydrofuran (THF) and a mixed solvent of THF and N, N‐dimethylformamide (DMF). The addition of DMF to THF resulted in a beneficial effect on the fiber formation and the electrospinnability. The obtained results revealed that the fibers were only formed in a narrow solution concentration range of 8–15 wt %; the morphology, diameter, structure, and mechanical performance of as‐spun fibers from PS and SIS solutions were affected by the composition weight ratio and the solution properties; and those from the solution at the intermediate concentration of 10 wt % exhibited a maximum tensile strength and strain at break. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

5.
Polycarbonate urethane (PCU) nano-fibers were fabricated via electrospinning using N,N- dimethylformamide (DMF) and tetrahydrofuran (THF) as the mixed solvent. The effect of volume ratios of DMF and THF in the mixed solvent on the fiber structures was investigated. The results show that nano-fibers with a narrow diameter distribution and a few defects were obtained when mixed solvent with the appropriate volume ratio of DMF and THF as 1∶1. When the proportion of DMF was more than 75% in the mixed solvent, it was easy to form many beaded fibers. The applied voltage in the electrospinning process has a significant influence on the morphology of fibers. When the electric voltage was set between 22 and 32 kV, the average diameters of the fibers were found between 420 and 570 nm. Scanning electron microscopy (SEM) images showed that fiber diameter and structural morphology of the electrospun PCU membranes are a function of the polymer solution concentration. When the concentration of PCU solution was 6.0 wt-%, a beaded-fiber microstructure was obtained. With increasing the concentration of PCU solutions above 6.0 wt-%, beaded fiber decreased and finally disappeared. However, when the PCU concentration was over 14.0 wt-%, the average diameter of fibers became large, closed to 2 μm, because of the high solution viscosity. The average diameter of nanofibers increased linearly with increasing the volume flow rate of the PCU solution (10.0 wt-%) when the applied voltage was 24 kV. The results show that the morphology of PCU fibers could be controlled by electrospinning parameters, such as solution concentration, electric voltage and flow rate.  相似文献   

6.
In this study, we have successfully fabricated electrospun polystyrene (PS) nanofibers having a diameter of 326 ± 50 nm with a parallel grooved texture using a mixed solvent of tetrahydrofuran (THF) and N,N-dimethylformamide (DMF). We discovered that solvent system, solution concentration, and relative humidity were the three key factors to the formation of grooved texture and the diameter of nanofibers. We demonstrated that grooved nanofibers with desired properties (e.g., different numbers of grooves, widths between two adjacent grooves, and depths of grooves) could be electrospun under certain conditions. When THF/DMF ratio was higher than 2:1, the formation mechanism of single grooved texture should be attributed to the formation of voids on the jet surface at the early stage of electrospinning and subsequent elongation and solidification of the voids into a line surface structure. When THF/DMF ratio was 1:1, the formation mechanism of grooved texture should be ascribed to the formation of wrinkled surface on the jet surface at the early stage of electrospinning and subsequent elongation into a grooved texture. Such findings can serve as guidelines for the preparation of grooved nanofibers with desired secondary morphology.  相似文献   

7.
By means of the electrospinning technique, micron- and nanofibers can be obtained from polymer solutions under a very high electrical field. A special challenge is to produce bead-free uniform fibers since any minor changes in the electrospinning parameters such as slight variations in the polymer solutions and/or electrospinning experimental parameters may result in significant variations in the final nanofiber morphology. Furthermore, it is often not trivial at all to obtain reproducible uniform electrospun nanofibers for the optimized electrospinning conditions. Here we report that the conductivity of the solvent is the key factor for the reproducible electrospinning of uniform polystyrene (PS) fibers from dimethylformamide (DMF) solutions. It is shown that even slight changes in the conductivity of the DMF solutions can greatly affect the morphology of the resulting electrospun PS fibers. Here, we have carried out a thorough and systematic study on the effect of solution conductivity on the electrospinning of bead-free polystyrene (PS) fibers when dimethylformamide (DMF) was used as the solvent. Interestingly, we found out that different grades of solvent as-received (DMF) from various suppliers have slightly different solution conductivities. Consequently, the polymer solutions prepared with the same PS concentration have different conductivities, which are shown to have significant changes on the morphology of the PS fibers resulting in beaded or bead-free uniform fibers when electrospun under the identical electrospinning conditions. Such as, bead-free PS fibers were obtained from PS solutions in the range of 20% (w/v) through 30% (w/v) depending on the DMF grade used. In brief, it was observed that solutions with a higher conductivity yielded bead-free fibers from lower polymer concentrations, which confirms that the solution conductivity plays a very significant role in producing bead-free uniform PS fibers.  相似文献   

8.
Polystyrene (PS) with a concentration of 20% by weight in THF/DMF was electrospun on a flat sheet collector. At a concentration of THF above 75%, blocking at the needle tip caused bead formation. However, a nice fiber mat was obtained with the 75/25 THF/DMF. Moreover, at a traveling distance of 10 and 15 cm and voltages from 10 to 16 kV, the PS fibers exhibited alignment. This alignment was reproducible when voltage stabilizer was connected to the voltage supply. This suggested that the uniformly positive charges arising from external voltage interacted with the aromatic rings on the PS chain, yielding a uniform dipole moment. As a result, during jet traveling, the solvent evaporated and the molecules were oriented and frozen at the ground collector. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

9.
Fiber formation from atactic polystyrene (aPS) and alternating poly(styrene‐maleic anhydride) (PSMA) synthesized by free radical polymerization (AIBN, 90°C, 4 h) were investigated by electrospinning from various solutions. aPS was soluble in dimethylformamide (DMF), tetrahydrofuran (THF), toluene, styrene, and benzene, whereas PSMA was soluble in acetone, DMF, THF, dimethylsulfoxide (DMSO), ethyl acetate, and methanol. aPS fibers could be electrospun from 15 to 20% DMF and 20% THF solutions, but not from styrene nor toluene. PSMA, on the other hand, could be efficiently electrospun into fibers from DMF and DMSO at 20 and 25%, respectively. Few PSMA fibers were, however, produced from acetone, THF, or ethyl acetate solutions. Results showed that solvent properties and polymer–solvent miscibility strongly influenced the fiber formation from electrospinning. The addition of solvents, such as THF, generally improved the fiber uniformity and reduced fiber sizes for both polymers. The nonsolvents, however, had opposing effects on the two polymers, i.e., significantly reducing PSMA fiber diameters to 200 to 300 nm, creating larger and irregularly shaped aPS fibers. The ability to incorporate the styrene monomer and divinylbenzene crosslinker in aPS fibers as well as to hydrolyze PSMA fibers with diluted NaOH solutions demonstrated potential for post‐electrospinning reactions and modification of these ultrafine fibers for reactive support materials. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

10.
Celebioglu A  Uyar T 《Nanoscale》2012,4(2):621-631
High molecular weight polymers and high polymer concentrations are desirable for the electrospinning of nanofibers since polymer chain entanglements and overlapping are important for uniform fiber formation. Hence, the electrospinning of nanofibers from non-polymeric systems such as cyclodextrins (CDs) is quite a challenge since CDs are cyclic oligosaccharides. Nevertheless, in this study, we have successfully achieved the electrospinning of nanofibers from chemically modified CDs without using a carrier polymer matrix. Polymer-free nanofibers were electrospun from three different CD derivatives, hydroxypropyl-β-cyclodextrin (HPβCD), hydroxypropyl-γ-cyclodextrin (HPγCD) and methyl-β-cyclodextrin (MβCD) in three different solvent systems, water, dimethylformamide (DMF) and dimethylacetamide (DMAc). We observed that the electrospinning of these CDs is quite similar to polymeric systems in which the solvent type, the solution concentration and the solution conductivity are some of the key factors for obtaining uniform nanofibers. Dynamic light scattering (DLS) measurements indicated that the presence of considerable CD aggregates and the very high solution viscosity were playing a key role for attaining nanofibers from CD derivatives without the use of any polymeric carrier. The electrospinning of CD solutions containing urea yielded no fibers but only beads or splashes since urea caused a notable destruction of the self-associated CD aggregates in their concentrated solutions. The structural, thermal and mechanical characteristics of the CD nanofibers were also investigated. Although the CD derivatives are amorphous small molecules, interestingly, we observed that these electrospun CD nanofibers/nanowebs have shown some mechanical integrity by which they can be easily handled and folded as a free standing material.  相似文献   

11.
采用四氢呋喃和无水乙醇为溶剂,利用静电纺丝法制备了聚己内酯(PCL)/聚乙二醇(PEG)共混纳米纤维。研究了共混配比、溶液浓度、无水乙醇的加入以及电纺电压、接收距离等工艺参数对纤维形态和性能的影响。测试结果表明:聚乙二醇和聚己内酯以一定比例共混后改善了聚己内酯纤维毡的亲水性和细胞相容性;随着纺丝原液浓度增加,电纺产品由高分子微/纳米液滴结构渐变为珠状结构较少的平滑纤维,平均纤维直径逐渐增大;一定范围内,纤维平均直径随电压的上升而增大,但与接收距离关系不大;此外,加入无水乙醇后,共混溶液电导率增加,有利于喷射流的劈裂,减少了珠状结构的数量。  相似文献   

12.
将N,N-二甲基甲酰胺(DMF)和四氢呋喃(THF)按体积比0:4、1:3、2:2、3:1、4:0混合作为溶剂,确定配比后,在不同浓度、电压下对热塑性聚氨酯(TPU)溶液进行静电纺丝。结果表明,DMF与THF的体积比对聚氨酯静电纺丝纤维的形貌、直径及其均匀性有明显影响,当混合溶液体积比为2:2,浓度为0.18g/mL,电压为26kV时,TPU纺丝液纺丝效果最佳,得到最理想的纤维;纤维直径随DMF含量的增多而减小,但当DMF含量过多时,纤维上容易出现液滴,纤维形貌变差;TPU纺丝液浓度增大,纤维直径增大;电压增大,纤维直径减小。  相似文献   

13.
The effect of NaSCN salt on the spinnability of polyacrylonitrile (PAN) solutions, its resulting morphology, mechanical property, and the flame resistance of the resulting electrospun nanofibers were studied. The intent was to develop a method to produce nanosized carbon fiber precursors with good properties. Electrospun PAN nanofibers from 9.7–9.9 wt% PAN/sodiumthiocyanate (NaSCN) (aq)/Dimethylformamide (DMF) solutions with 1.0–2.9 wt% NaSCN (aq), and 10–15 wt% PAN/DMF solutions without salt exhibited good spinnability and morphology with no beading in the range of applied voltage (18–20 kV) and take‐up velocity (9.8–12.3 m/s). The relatively high take‐up velocity produced good yarn alignment. The diameter distributions of the PAN nanofibers containing the NaSCN salt were narrower than those of the PAN/DMF nanofibers without the salt. It was determined that the maximum content of salt for production of electrospun PAN nanofibers with good morphology was below 3.8 wt% (40 wt% based on PAN). The salt concentration can positively influence on the narrow diameter distributions of the resulting electrospun fibers. Also, it could be confirmed that the salt effect on mechanical property and flame resistance of electrospun PAN nanofibers. In particular, the elongation of the PAN nanofiber with 2.9 wt% NaSCN (aq) was significantly increased as much as 186% compared with that of 10 wt% PAN nanofiber without the salt. The flame resistance and mechanical properties of the stabilized PAN nanofibers with NaSCN (aq) increased after oxidization process. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers.  相似文献   

14.
Six solvents [acetic acid, acetonitrile, m‐cresol, toluene, tetrahydrofuran (THF) and dimethylformamide (DMF)] with different properties (eg density, boiling point, solubility parameter, dipole moment and dielectric constant) were used to prepare electrospun polystyrene (PS) fibers. Fiber diameters were found to decrease with increasing density and boiling point of the solvents. A large difference between the solubility parameters of PS and the solvent was responsible for the bead‐on‐string morphology observed. Productivity of the fibers (the numbers of fiber webs per unit area per unit time) increased with increasing dielectric constant and dipole moment of the solvents. Among the solvents studied, DMF was the best solvent that provided PS fibers with highest productivity and optimal morphological characteristics. The beadless, well‐aligned PS fibers with a diameter of ca 0.7 µm were produced from the solution of 10 % (w/v) of PS in DMF at an applied electrostatic field of 15 kV/10 cm, a nitrogen flow rate of 101 ml min?1 and a rotational speed of the collector of 1500 rev min?1. Copyright © 2004 Society of Chemical Industry  相似文献   

15.
Electrospinning is a process of electrostatic fiber formation which uses electrical forces to produce polymer nanofibers from polymer solution. The electrospinning system consists of a syringe feeder system, a collector system, and a high power supplier. The important parameters in the morphology of electrospun polystyrene fibers are concentration, applied voltage, and solvent properties. Higher concentrations of the polymer solution form thicker fibers and fewer beads. When the concentration is 7 wt%, electrospun fibers have an average diameter of 340 nm, but as the concentration of PS increases to 17 wt%, the fiber diameter gradually thickens to 3,610 nm. The fiber morphology under different solvent mixture ratios and solvent mixtures has also been studied.  相似文献   

16.
采用聚醚砜(PES)的良溶剂二甲基甲酰胺(DMF)和非良溶剂丙酮(AC)为共溶剂体系,研究了溶剂组成、纺丝成形条件对静电纺丝PES纤维的形貌及纤维直径的影响。结果表明:DMF/AC的配比对于静电纺丝PES纤维形貌具有直接的调控作用,随着DMF/AC混合溶剂中AC用量的增加,纤维平均直径变大,纤维毡中串珠数目明显减少,纤维均一性变好;随着纺丝液浓度的升高,纺丝电压的增大,纤维的平均直径变大;接收距离的变化对纤维平均直径影响不大;PES最佳纺丝工艺条件为纺丝溶液质量分数13%,纺丝电压15 kV,接收距离10 cm,mDMF/mAC为8.5/1.5,在此条件下,可以获得纤维平均直径为96 nm的PES纤维毡。  相似文献   

17.
Submicrosized and nanosized fibers of polymers can be formed easily by electrospinning techniques. However, bead formation can occur if inappropriate solvent systems are used. In this study, we focused on investigating the effects of solvents and organic salt on the electrospinnability of poly(butylene succinate) (PBS). Electrospun PBS fibers were obtained from single‐solvent systems, that is, systems with chloroform (CF) or dichloromethane, at various concentrations (8–30% w/v). Discrete beads and beaded fibers were still found at every PBS concentration. In this study, the electrospinnability of the PBS solutions in CF were improved by the addition of methanol (MeOH) as a cosolvent and an organic salt [alkyl ammonium ethyl sulfate (AAES)]. The obtained fibers were smooth without any beads, and the diameters were affected by the amount of MeOH and the PBS concentration. The electrospinnability of PBS could be enhanced by the addition of a cosolvent with a high dielectric constant or organic salt (AAES). Moreover, the diameters of the electrospun PBS fibers decreased with increasing AAES concentration. We found that the presence of MeOH (30 vol %) and the addition of AAES caused an increase in the crystallinity of the PBS fibers. Therefore, we concluded that bead‐free ultrafine PBS fibers could be obtained through the addition of the cosolvent and the organic salt. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42716.  相似文献   

18.
Summary: In order to produce nanometer‐sized fibers at an industrial scale, not only the morphology but also the production rate of fibers is important. The effect of solvent properties and functionality on the production rate of electrospun PS nanofibers was investigated using eighteen different solvents. The solution concentration was varied between 10 and 30% w/v. Electrospinning of PS solutions was carried out at various applied voltages and tip‐to‐collector distances The production rate of the obtained PS nanofibers was quantified in terms of electrospinnability. We found that the chance for the resulting PS solution to be spinnable is greater for solvents with high dipole moment and low viscosity. The solvent that provided the highest electrospinnability for polystyrene was DMF and the functionalities that promoted high dipole moment and thus high spinnability were the carbonyl group and the nitrogen group with free electrons. General guidelines for choosing suitable solvents for successful production of electrospun nanofibers have also been proposed.

SEM image of PS 685D at 200× magnification and the %‐coverage of the fibers obtained by using DMF, chloroform, and 1,4‐dioxane.  相似文献   


19.
The morphologies and properties of Polystyrene (PS)/Carbon Nanotube (CNT) conductive electrospun mat were studied in this paper. Nanocomposite fibers were obtained through electrospinning of PS/Di-Methyl Formamide (DMF) solution containing different concentrations and types of CNTs. The dispersion condition of CNTs was correlated to morphologies and properties of nanocomposite fibers. A copolymer as an interfacial agent (SBS, Styrene-butadiene-styrene type) was used to modify the dispersion of CNTs in PS solution before electrospinning. The results showed that the presence of the copolymer significantly enhances CNT dispersion. The fiber diameters varied between 200 nm and 800 nm depending on CNT type, polymer concentration and copolymer. The final morphological study of the fibers showed that CNT addition caused a decrease in beads formation along fiber axis before percolation threshold. However, addition of CNTs above percolation increased the beads formation, depending on the dispersion condition. The presence of SBS modified the dispersion, reduced the fiber diameter and the number of bead structures. Electrical conductivity measurements on nanocomposite mats of 15-300 μm in thickness showed an electrical percolation threshold around 4 wt% MWCNT; while the samples containing SBS showed higher values of conductivities below percolation compared to the samples with no compatibilizer. Enhancement in mechanical properties was observed by the addition of CNTs at concentrations below percolation.  相似文献   

20.
Chunyi Tang  Haiqing Liu 《Polymer》2007,48(15):4482-4491
Random and alternating poly(styrene-co-maleic anhydrides) (SMAs) with respective maleic anhydride (MAh) content of 32 and 48% were synthesized through radical polymerization. SMA nanofibers with diameter down to 180 nm were generated by electrospinning from solvents acetone, dimethylformamide (DMF), and their mixtures. Fiber diameter increased dramatically when the SMA concentration in the spinning solution reached to a critical point where the SMA chains are extensively entangled. The diameter of SMA nanofiber decreased with increasing DMF content in the mixture, but beads are often accompanied as DMF content is over 50%. The optimum acetone/DMF ratio was found to be 2:1, in which continuous electrospinning was achieved and bead-free nanofibers were obtained. SMA nanofibers with MAh content of 32 and 48% were crosslinked with diethyleneglycol and subsequently hydrolyzed in NaOH/EtOH to turn SMA into crosslinked sodium form SMA (SMA-Na) hydrogel nanofiber. These hydrogel nanofibers were able to retain fiber form after immersing in water for 24 h. Their water absorption ratio was up to 37.6 and 8.2 g/g in distilled water and 0.25 N NaCl aq. solution, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号