首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphatidylglycerophosphate (PG-P) synthase catalyzes the synthesis of PG-P from CDP-diacylglycerol and sn-glycerol 3-phosphate and functions as the committed and rate-limiting step in the biosynthesis of cardiolipin (CL). In eukaryotic cells, CL is found predominantly in the inner mitochondrial membrane and is generally thought to be an essential component of many mitochondrial functions. We have determined that the PEL1 gene (now renamed PGS1), previously proposed to encode a second phosphatidylserine synthase of yeast (Janitor, M., Jarosch, E., Schweyen, R. J., and Subik, J. (1995) Yeast 13, 1223-1231), in fact encodes a PG-P synthase of Saccharomyces cerevisiae. Overexpression of the PGS1 gene product under the inducible GAL1 promoter resulted in a 14-fold increase in in vitro PG-P synthase activity. Disruption of the PGS1 gene in a haploid strain of yeast did not lead to a loss of viability but did result in a dependence on a fermentable carbon source for growth, a temperature sensitivity for growth, and a petite lethal phenotype. The pgs1 null mutant exhibited no detectable in vitro PG-P synthase activity and no detectable CL or phosphatidylglycerol (PG); significant CL synthase activity was still present. The growth arrest phenotype and lack of PG-P synthase activity of a pgsA null allele of Escherichia coli was corrected by an N-terminal truncated derivative of the yeast PG-P synthase. These results unequivocally demonstrate that the PGS1 gene encodes the major PG-P synthase of yeast and that neither PG nor CL are absolutely essential for cell viability but may be important for normal mitochondrial function.  相似文献   

2.
Phosphatidylglycerophosphate (PGP) synthase catalyzes the first step in the cardiolipin (CL) branch of phospholipid biosynthesis in mammalian cells. In this study, we isolated a Chinese hamster ovary (CHO) cDNA encoding a putative protein similar in sequence to the yeast PGS1 gene product, PGP synthase. The gene for the isolated CHO cDNA was named PGS1. Expression of the CHO PGS1 cDNA in CHO-K1 cells and production of a recombinant CHO PGS1 protein with a N-terminal extension in Escherichia coli resulted in 15-fold and 90-fold increases of PGP synthase specific activity, respectively, establishing that CHO PGS1 encodes PGP synthase. A PGP synthase-defective CHO mutant, PGS-S, isolated previously (Ohtsuka, T., Nishijima, M., and Akamatsu, Y. (1993) J. Biol. Chem. 268, 22908-22913) exhibits striking reductions in biosynthetic rate and cellular content of phosphatidylglycerol (PG) and CL and shows mitochondrial morphological and functional abnormalities. The CHO PGS-S mutant transfected with the CHO PGS1 cDNA exhibited 620-fold and 7-fold higher PGP synthase activity than mutant PGS-S and wild type CHO-K1 cells, respectively, and had a normal cellular content and rate of biosynthesis of PG and CL. In contrast to mutant PGS-S, the transfectant had morphologically normal mitochondria. When the transfectant and mutant PGS-S cells were cultivated in a glucose-depleted medium, in which cellular energy production mainly depends on mitochondrial function, the transformant but not mutant PGS-S was capable of growth. These results demonstrated that the morphological and functional defects displayed by the PGS-S mutant are due directly to the reduced ability to make normal levels of PG and/or CL.  相似文献   

3.
Several proteins secreted by enteric bacteria are thought to contribute to virulence by disturbing the signal transduction of infected cells. Here, we report that SopB, a protein secreted by Salmonella dublin, has sequence homology to mammalian inositol polyphosphate 4-phosphatases and that recombinant SopB has inositol phosphate phosphatase activity in vitro. SopB hydrolyzes phosphatidylinositol 3,4,5-trisphosphate, an inhibitor of Ca2+-dependent chloride secretion. In addition, SopB hydrolyzes inositol 1,3,4,5,6 pentakisphosphate to yield inositol 1,4,5, 6-tetrakisphosphate, a signaling molecule that increases chloride secretion indirectly by antagonizing the inhibition of chloride secretion by phosphatidylinositol 3,4,5-trisphosphate [Eckmann, L., Rudolf, M. T., Ptasznik, A., Schultz, C., Jiang, T., Wolfson, N., Tsien, R., Fierer, J., Shears, S. B., Kagnoff, M. F., et al. (1997) Proc. Natl. Acad. Sci. USA 94, 14456-14460]. Mutation of a conserved cysteine that abolishes phosphatase activity of SopB results in a mutant strain, S. dublin SB c/s, with decreased ability to induce fluid secretion in infected calf intestine loops. Moreover, HeLa cells infected with S. dublin SB c/s do not accumulate high levels of inositol 1,4,5,6-tetrakisphosphate that are characteristic of wild-type S. dublin-infected cells. Therefore, SopB mediates virulence by interdicting inositol phosphate signaling pathways.  相似文献   

4.
5.
In pursuit of the physiological role of inositol 1,3,4,5-tetrakisphosphate 3-phosphatase, which also attacks inositol pentakisphosphate and inositol hexakisphosphate with much higher affinity (Nogimori, K., Hughes, P.J., Glennon, M.C., Hodgson, M.E., Putney, J.W., Jr., and Shears, S.B. (1991) J. Biol. Chem. 266, 16499-16506), we have studied the subcellular distribution of the enzyme in liver. Initially, we had to overcome the problem that potent endogenous inhibitor(s) compromise the detection of this enzyme in vitro (Hodgson, M.E., and Shears, S.B. (1990) Biochem. J. 267, 831-834). We partially purified these inhibitor(s) by anion-exchange chromatography and gel filtration; inhibitory activity co-eluted with standard inositol hexakisphosphate and was depleted by treatment with phytase. Thus, subcellular fractions were pretreated with phytase before assay of 3-phosphatase activity. Our experiments revealed that the hepatic 3-phosphatase was nearly exclusively restricted to the endoplasmic reticulum, and there was little or no activity in either the cytosol, plasma membranes, mitochondria, or nuclei. Detergent treatment of microsomes indicated that there was 93 +/- 2% latency to mannose-6-phosphatase, an intraorganelle enzyme activity (Vanstapel, F., Pua, K., and Blanckaert, N. (1986) Eur. J. Biochem. 156, 73-77). Similar latencies were found for the hydrolysis of inositol 1,3,4,5-tetrakisphosphate (95 +/- 1%), inositol 1,3,4,5,6-pentakisphosphate (94 +/- 1%), and inositol hexakisphosphate (93 +/- 2%). Treatment of microsomes with either sodium carbonate or phosphatidylcholine-specific phospholipase C, to release luminal contents, led to solubilization of approximately 90% of 3-phosphatase activity. Thus, hepatic 3-phosphatase has a highly restricted access to inositol polyphosphates in vivo that needs to be accounted for in the determination of the physiological role of this enzyme.  相似文献   

6.
7.
The PGS1 gene of Saccharomyces cerevisiae encodes phosphatidylglycerophosphate (PG-P) synthase. PG-P synthase activity is regulated by factors affecting mitochondrial development and through cross-pathway control by inositol. The molecular mechanism of this regulation was examined by using a reporter gene under control of the PGS1 gene promoter (PPGS1-lacZ). Gene expression subject to carbon source regulation was monitored both at steady-state level and during the switch between different carbon sources. Cells grown in a non-fermentable carbon source had beta-galactosidase levels 3-fold higher than those grown in glucose. A shift from glucose to lactate rapidly raised the level of gene expression, whereas a shift back to glucose had the opposite effect. In either a pgs1 null mutant or a rho mutant grown in glucose, PPGS1-lacZ expression was 30-50% of the level in wild type cells. Addition of inositol to the growth medium resulted in a 2-3-fold reduction in gene expression in wild type cells. In ino2 and ino4 mutants, gene expression was greatly reduced and was not subject to inositol regulation consistent with inositol repression being dependent on the INO2 and INO4 regulatory genes. PPGS1-lacZ expression was elevated in a cds1 null mutant in the presence or absence of inositol, indicating that the capacity to synthesize CDP-diacylglycerol affects gene expression. Lack of cardiolipin synthesis (cls1 null mutant) had no effect on reporter gene expression.  相似文献   

8.
Echinocandins and nikkomycins are antibiotics that inhibit the synthesis of the essential cell wall polysaccharide polymers 1,3-beta-glucan and chitin, respectively. Some 40 echinocandin-resistant Saccharomyces cerevisiae mutants were isolated and assigned to five complementation groups. Four complementation groups contained mutants with 38 recessive mutations. The fifth complementation group comprised mutants with one dominant mutation, etg1-3 (strain MS10), and one semidominant mutation, etg1-4 (strain MS14). MS10 and MS14 are resistant to the semisynthetic pneumocandin B, L-733,560, and to aculeacin A but not to papulacandin. In addition, microsomal membranes of both mutant strains contain 1,3-beta-glucan synthase activity that is resistant to L-733,560 but not to papulacandin. Furthermore, MS14 is also supersensitive to nikkomycin Z. The echinocandin resistance and the nikkomycin Z supersensitivity of MS14 cosegregated in genetic crosses. The wild-type gene (designated ETG1 [C. Douglas, J. A. Marrinan, and M. B. Kurtz, J. Bacteriol. 176:5686-5696, 1994, and C. Douglas, F. Foor, J. A. Marrinan, N. Morin, J. B. Nielsen, A. Dahl, P. Mazur, W. Baginsky, W. Li, M. El-Sherbeini, J. A. Clemas, S. Mandala, B. R. Frommer, and M. B. Kurtz, Proc. Natl. Acad. Sci. USA, in press]) was isolated from a genomic library in the plasmid YCp50 by functional complementation of the nikkomycin Z supersensitivity phenotype. The cloned DNA also partially complements the echinocandin resistance phenotype, indicating that the two phenotypes are due to single mutations. The existence of a single mutation, in MS14, simultaneously affecting sensitivity to a glucan synthase inhibitor and a chitin synthase inhibitor implies a possible interaction between the two polymers at the cell surface.  相似文献   

9.
10.
The psychotherapeutic action of Li+ in brain has been proposed to result from the depletion of cellular inositol secondary to its block of inositol monophosphatase. This action is thought to slow phosphoinositide resynthesis, thereby attenuating stimulated phosphoinositidase-mediated signal transduction in affected cells. In the present study, the effect of Li+ on muscarinic receptor-stimulated formation of the immediate precursor of phosphatidylinositol, CDP-diacylglycerol (CDP-DAG), has been examined in human SK-N-SH neuroblastoma cells that have been cultured under conditions that alter the cellular content of myo-inositol. Resting neuroblastoma cells, like brain cells in vivo, were found to concentrate inositol from the culture medium, achieving an intracellular level of 60.0 +/- 4 nmol/mg of protein. The addition of carbachol to [3H]cytidine-prelabeled cells elicited a four- to fivefold increase in the accumulation of labeled CDP-DAG. This stimulated formation of [3H]CDP-DAG was completely blocked by the addition of 10 microM atropine, was not dependent on the presence of Li+, nor was it affected by co-incubation with myo-inositol. This result was in sharp contrast to findings in rat brain slices, in which carbachol-stimulated formation of [3H]CDP-DAG was potentiated approximately 10-fold by Li+ and substantially reduced by coincubation with inositol. The formation of [3H]CDP-DAG in labeled SK-N-SH cells by carbachol was both concentration and time dependent. The order of efficacy of muscarinic ligands in stimulating [3H]-CDP-DAG accumulation paralleled that established in these cells for inositol phosphate accumulation, i.e., carbachol > or = oxotremorine-M > bethanecol > or = arecoline > oxotremorine > pilocarpine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
It has been suggested (Kini, R. R., and Evans, H. J. (1987) J. Biol. Chem. 262, 14402-14407) that the anticoagulant activity of members of the 14-kDa phospholipase A2 (PLA2) family depends on the presence of basic residues within a variable surface region (residues 54-77) distinct from both the conserved catalytic machinery and surface sites mediating the antibacterial action of these enzymes (see Weiss, J., Inada, M., Elsbach, P., and Crowl, R. M. (1994) J. Biol. Chem. 269, 26331-26337). To further define the determinants of the anticoagulant activity of PLA2, we have analyzed the inhibitory effects of purified native and recombinant PLA2 on cell-free prothrombinase. Both native and recombinant wild-type pig pancreas (net charge -1) and human "secretory" PLA2 (net charge +15) produced similar dose-dependent inhibition of prothrombinase activity that was significantly less potent than a toxic PLA2 purified from snake venom. Site-specific mutations that either increased or decreased PLA2 activity toward bactericidal/permeability-increasing protein-treated Escherichia coli by up to 50-fold had no effect on antiprothrombinase activity. In contrast, substitution of Arg for Asp-59/Gly for Ser-60 in the pig PLA2 increased antiprothrombinase activity by 5-10-fold without affecting catalytic activity toward a range of phospholipid substrates or antibacterial activity. Comparison of antiprothrombinase activity of catalytically active and inactive forms of the PLA2 and under a range of phospholipid conditions revealed that the potent antiprothrombinase activity of native toxic venom PLA2 and of the D59R.S60G mutant pancreatic PLA2 reflect combined catalytic and noncatalytic actions, the latter apparently dependent on basic residues at discrete surface sites in the enzyme.  相似文献   

12.
The relationship between glucokinase (GK) gene copy number and glucose homeostasis was studied in transgenic mice with additional copies of the entire GK gene locus (Niswender, K. D., Postic, C., Jetton, T. L., Bennett, B. D., Piston, D. W., Efrat, S., and Magnuson, M. A. (1997) J. Biol. Chem. 272, 22564-22569). The plasma glucose concentration was reduced by 25 +/- 3% and 37 +/- 4% in mice with one or two extra copies of the gene locus, respectively. The basis for the hypoglycemic phenotype was determined using metabolic tracer techniques in chronically cannulated, conscious mice with one extra GK gene copy. Under basal conditions (6-h fasted) transgenic mice had a lower blood glucose concentration (-12 +/- 1%) and a slightly higher glucose turnover rate (+8 +/- 3%), resulting in a significantly higher glucose clearance rate (+21 +/- 2%). Plasma insulin levels were not different, suggesting that increased glucose clearance was due to augmented hepatic, not islet, GK gene expression. Under hyperglycemic clamp conditions the transgenic mice had glucose turnover and clearance rates similar to the controls, but showed a lower plasma insulin response (-48 +/- 5%). Net hepatic glycogen synthesis was markedly elevated (+360%), whereas skeletal muscle glycogen synthesis was decreased (-40%). These results indicate that increased GK gene dosage leads to increased hepatic glucose metabolism and, consequently, a lower plasma glucose concentration. Increased insulin secretion was not observed, even though the transgene is expressed in islets, because hypoglycemia causes a down-regulation in islet GK content (Niswender, K. D., Postic, C., Jetton, T. L., Bennett, B. D., Piston, D. W., Efrat, S., and Magnuson, M. A. (1997) J. Biol. Chem. 272, in press).  相似文献   

13.
14.
15.
16.
The stalk region of the H+-ATPase from Saccharomyces cerevisiae has been proposed to play a role in coupling ATP hydrolysis to proton transport. Genetic probing was used to examine the role of stalk segments S2 and S3, associated with M2 and M3, respectively. Saturation mutagenesis was used to explore the role of side group character at position Ile183 in S2, at which an alanine substitution was shown previously to partially uncouple the enzyme (Wang, G., Tamas, M. J., Hall, M. J., Pascual-Ahuir, A., and Perlin, D. S. (1996) J. Biol. Chem. 271, 25438-25445). Diverse side group substitutions were tolerated at this position, although three substitutions, I183N, I183R, and I183Y required second site mutations at the C terminus of the enzyme for stabilization. Substitution of glycine and proline at Ile183 resulted in lethal phenotypes, suggesting that the backbone may be more important than side group at this position. Proline/glycine mutagenesis was used to study additional sites in S2 and S3. The substitution of proline at Gly186 resulted in a lethal phenotype, whereas substitutions in S3 of proline or serine at Gly270 and proline or glycine at Thr287 resulted in viable mutants. Mutations G270P and T287P resulted in mutant enzymes that produced pronounced growth defects and ATP hydrolysis rates that were 35% and 60% lower than wild type enzyme, respectively. The mutant enzymes transported protons at rates consistent with their ATPase activity, suggesting that the growth defects observed were due to a reduced rate of ATP hydrolysis and not to uncoupling of proton transport. The prominent growth phenotypes produced by mutations G270P and T287P permitted the isolation of suppressor mutations, which restored wild type growth. Most of the suppressors either replaced the primary site mutation with alanine or restored the wild type residue by ectopic recombination with PMA2, both of which restore alpha-helical tendency. This study suggests that maintaining alpha-helical character is essential to S2 and may play an important role in S3.  相似文献   

17.
A previously cloned gene of Saccharomyces cerevisiae, which complements the growth defect of a phosphoglucomutase (pgm1 delta/pgm2 delta) double deletion mutant on a pure galactose medium [Boles, E., Liebetrau, W., Hofmann, M. & Zimmermann, F. K. (1994) Eur. J. Biochem. 220, 83-96], was identified as the structural gene encoding N-acetylglucosamine-phosphate mutase. The complete nucleotide sequence of the gene, AGM1, and surrounding regions were determined. AGM1 codes for a predicted 62-kDa protein with 557 amino acids and is located on chromosome V adjacent to the known gene PRB1 encoding protease B. No extended nucleotide or amino acid sequence similarities could be found in the databases, except for a small region of amino acids with high similarity to the active-site consensus sequence of hexosephosphate mutases. Three putative pheromone-responsive elements have been identified in the upstream region of the AGM1 gene. The gene is essential for cell viability. An agm1 deletion mutant progresses through only approximately five cell cycles to form a 'string' of undivided cells with an abnormal cell morphology resembling glucosamine auxotrophic mutants. Expression of the AGM1 gene on a multi-copy plasmid led to a significantly increased N-acetylglucosamine-phosphate mutase activity. Unlike over-expression of the AGM1 gene in a pgm1/pgm2 double deletion mutant which could restore phosphoglucomutase activity, over-expression of the PGM2 gene encoding the major isoenzyme of phosphoglucomutase did not increase N-acetylglucosamine-phosphate-mutase activity and did not restore growth of agm1 deletion mutant cells. Our observations indicate that the different hexosephosphate mutases of S. cerevisiae have partially overlapping substrate specificities but, nevertheless, distinct physiological functions.  相似文献   

18.
We studied the effect of alterations in the level of myocardial beta-adrenergic receptor kinase betaARK1) in two types of genetically altered mice. The first group is heterozygous for betaARK1 gene ablation, betaARK1(+/-), and the second is not only heterozygous for betaARK1 gene ablation but is also transgenic for cardiac-specific overexpression of a betaARK1 COOH-terminal inhibitor peptide, betaARK1(+/-)betaARKct. In contrast to the embryonic lethal phenotype of the homozygous betaARK1 knockout (Jaber, M., Koch, W. J., Rockman, H. A., Smith, B., Bond, R. A., Sulik, K., Ross, J., Jr., Lefkowitz, R. J., Caron, M. G., and Giros, B. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 12974-12979), betaARK1(+/-) mice develop normally. Cardiac catheterization was performed in mice and showed a stepwise increase in contractile function in the betaARK1(+/-) and betaARK1(+/-)betaARKct mice with the greatest level observed in the betaARK1(+/-)betaARKct animals. Contractile parameters were measured in adult myocytes isolated from both groups of gene-targeted animals. A significantly greater increase in percent cell shortening and rate of cell shortening following isoproterenol stimulation was observed in the betaARK1(+/-) and betaARK1(+/-)betaARKct myocytes compared with wild-type cells, indicating a progressive increase in intrinsic contractility. These data demonstrate that contractile function can be modulated by the level of betaARK1 activity. This has important implications in disease states such as heart failure (in which betaARK1 activity is increased) and suggests that betaARK1 should be considered as a therapeutic target in this situation. Even partial inhibition of betaARK1 activity enhances beta-adrenergic receptor signaling leading to improved functional catecholamine responsiveness.  相似文献   

19.
Chronic exposure (>200 days) of HA1 fibroblasts to increasing concentrations of H2O2 or O2 results in the development of a stable oxidative stress-resistant phenotype characterized by increased cellular antioxidant levels, particularly catalase (D. R. Spitz et al, Arch. Biochem. Biophys., 279: 249-260, 1990; D. R. Spitz et al., Arch. Biochem. Biophys., 292: 221-227, 1992; S. J. Sullivan et al., Am. J. Physiol. (Lung Cell. Mol. Physiol.), 262: L748-L756, 1992). Acutely stressed cells failed to develop a stably resistant phenotype or increased catalase activity, suggesting that chronic exposure is required for the development of this phenotype. This study investigates the mechanism underlying increased catalase activity in the H2O2- and O2-resistant cell lines. In H2O2- and O2-resistant cells, catalase activity was found to be 20-30-fold higher than that in the parental HA1 cells and correlated with increased immunoreactive catalase protein and steady-state catalase mRNA levels. Resistant cell lines also demonstrated a 4-6-fold increase in catalase gene copy number by Southern blot analysis, which is indicative of gene amplification. Chromosome banding and in situ hybridization studies identified a single amplified catalase gene site located on a rearranged chromosome with banding similarities to Z-4 in the hamster fibroblast karyotype. Simultaneous in situ hybridization with a Z-4-specific adenine phosphoribosyltransferase (APRT) gene revealed that the amplified catalase genes were located proximate to APRT on the same chromosome in all resistant cells. In contrast, HA1 cells contained only single copies of the catalase gene that were not located on APRT-containing chromosomes, indicating that amplification is associated with a chromosomal rearrangement possibly involving Z-4. The fact that chronic exposure of HA1 cells to either HO2 or 95% O2 resulted in gene amplification suggests that gene amplification represents a generalized response to oxidative stress, contributing to the development of resistant phenotypes. These results support the hypothesis that chronic exposure to endogenous metabolic or exogenous environmental oxidative stress represents an important factor contributing to gene amplification and genomic instability.  相似文献   

20.
In vitro, anionic phospholipids can reactivate inactivated DnaA protein, which is essential for initiation of DNA replication at the oriC site of Escherichia coli [Sekimizu, K. & Kornberg, A. (1988) J. Biol. Chem. 263, 7131-7135]. Mutations in the pgsA gene (encoding phosphatidylglycerophosphate synthase) limit the synthesis of the major anionic phospholipids and lead to arrest of cell growth. We report herein that a mutation in the rnhA gene (encoding RNase H) that bypasses the need for the DnaA protein through induction of constitutive stable DNA replication [Kogoma, T. & von Meyenburg, K. (1983) EMBO J. 2, 463-468] also suppressed the growth arrest phenotype of a pgsA mutant. The maintenance of plasmids dependent on an oriC site for replication, and therefore DnaA protein, was also compromised under conditions of limiting anionic phospholipid synthesis. These results provide support for the involvement of anionic phospholipids in normal initiation of DNA replication at oriC in vivo by the DnaA protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号