首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
<正>一、引言在半导体材料的发展历史上,通常将硅(Si)、锗(Ge)称作第1代半导体。将砷化镓(Ga As)、磷化铟(In P)、磷化镓(Ga P)等为代表的合金半导体称作第2代半导体。在其之后发展起来的宽带隙半导体,碳化硅(Si C)、氮化镓(Ga N)、氮化铝(Al N)及金刚石等称为第3代半导体。Si C作为第3代半导体的杰出代表之一,相比前2代半导体材料,具有宽带隙、高热导率高、较大的电子饱和漂移速率、高化学稳定性、高击穿电场高等诸多优点,在高温、高频、大  相似文献   

2.
<正>一、第3代半导体材料概述第3代半导体材料是继第1代半导体材料和第2代半导体材料之后,近20年刚刚发展起来的新型宽禁带半导体材料。第3代半导体材料以氮化镓(GaN)、碳化硅(SiC)、氧化锌(ZnO)和氮化铝(AlN)等宽禁带化合物半导体为代表,其具有高击穿电场、高热导率、高电子饱和速率及高抗辐射能力等特点,因而更适合于制作高温、高频、抗辐射及大功率器件,在光电子领  相似文献   

3.
<正>第3代半导体材料即宽禁带半导体材料,又称高温半导体材料,主要包括碳化硅(Si C)、氮化镓(Ga N)、氮化铝(Al N)、氧化锌(Zn O)、金刚石等。这类材料具有宽的禁带宽度(禁带宽度大于2.2e V)、高的热导率、高的击穿电场、高的抗辐射能力、高的电子饱和速率等特点,适用于高温、高频、抗辐射及大功率器件的制作。第3代半导体材料凭借着其优异的特性,未来应用前景十分广阔。  相似文献   

4.
<正>第3代半导体是指以氮化镓(GaN)、碳化硅(SiC)、金刚石、氧化锌(ZnO)为代表的宽禁带半导体材料,各类半导体材料的带隙能比较见表1。与传统的第1代、第2代半导体材料硅(Si)和砷化镓(GaAs)相比,第3代半导体具有禁带宽度大、击穿电场高、热导率大、电子饱和漂移速度高、介电常数小等独特的性能,使其在光电器件、电力电子、射频微波器件、激光器和探测器件等方面展现出巨大  相似文献   

5.
正一、碳化硅单晶特性以碳化硅(Si C)、氮化镓(Ga N)为代表的宽禁带半导体材料,被称为第3代半导体材料。与第1代、第2代半导体材料相比较,Si C具有高热导率、高击穿场强、高饱和电子漂移速率和高键合能等优点[1]。Si C是目前发展最为成熟的宽禁带半导体材料之一,Si C在工作温度、抗辐射、耐击穿电压等性能方  相似文献   

6.
<正>碳化硅半导体(这里指4H-Si C)是新一代宽禁带半导体,它具有热导率高(比硅高3倍)、与Ga N晶格失配小(4%)等优势,非常适合用作新一代发光二极管(LED)衬底材料[1]、大功率电力电子材料[2]。采用碳化硅作衬底的LED器件亮度更高、能耗更低、寿命更长、单位芯片面积更小,且在大功率LED方面具有非常大的优势。此外,碳化硅除了用作LED衬底,它还可以制造高耐压、大功率电力电子器件如肖特基二极  相似文献   

7.
正氮化镓(GaN)和碳化硅(SiC)并称为第三代半导体材料的双雄,由于性能不同,GaN和SiC的应用领域也不相同。GaN具有禁带宽度大、击穿电场高、饱和电子速率大、热导率高、化学性质稳定和抗辐射能力强等优点,已经成为5G时代最具增长潜质的热点材料之一。一、第三代半导体材料行业市场发展现状半导体在过去主要经历了三代变化,20世纪60年代以硅(Si)、锗(Ge)为代表第一代半导体材  相似文献   

8.
碳化硅(SiC)具有禁带宽度大、热导率高、电子饱和漂移率大、临界击穿电场高、介电常数低及化学稳定性好等诸多优点,是具有广阔前景的第三代半导体材料。本文从半导体产业链分析了碳化硅半导体的研究现状及发展前景。  相似文献   

9.
正一、概述作为一种新型电子和光电子器件半导体材料,氮化镓(Ga N)与碳化硅(Si C)一起,被认为是继第1代锗(Ge)、硅(Si)半导体材料、第2代砷化镓(Ga As)和磷化铟(In P)化合物半导体材料之后的所谓第3代半导体材料,其研究与应用是目前全球半导体产业化研究的前沿和热点之一。它具有带隙宽(而且是直接带隙)、键强度大、电子迁移率高、化学稳定性好(几乎不被任何酸腐蚀)等优良性质和强  相似文献   

10.
正一、研究背景宽禁带半导体——碳化硅(Si C)和氮化镓(Ga N),是继第1代硅(Si)、锗(Ge)和第2代砷化镓(Ga As)、磷化铟(In P)等材料之后发展起来的第3代半导体材料。宽禁带半导体可以在较高的温度和较大的外界能量作用下保持原有的N型或P型导电性能,从而使器件可以在高温和强辐照环境下工作,其临界场强也大,因此器件的耐压程度也较高。第3  相似文献   

11.
一种基于半导体照明的无线通信系统   总被引:2,自引:0,他引:2  
利用15W大功率白光发光二极管(LED)作为通信光源,研制出一种基于半导体照明的无线通信演示系统,该系统具有可用带宽高、保密性好、无电磁辐射等优点,可以在进行室内照明的同时实现文本、图像和声音等数据的传送。该系统采用开关键控(OOK)调制方式,在波特率为115.2kbps时支持最远为3.2m的通信距离,接收信号的误码率10~(-6)。  相似文献   

12.
正第3代半导体材料是指带隙宽度明显大于硅(Si)(1.1eV)和砷化镓(GaAs)(1.4eV)的宽禁带半导体材料。它具备禁带宽度大、击穿电场高、热导率大、电子饱和漂移速率高、抗辐射能力强等优越性能,是固态光源、下一代射频和电力电子器件的"核心",在半导体照明、消费类电子、5G移动通信、新能源汽车、智能电网、轨道交通等领域有广阔的应用前景,有望突破传统半导体技术的瓶颈,与第1代、第2代半导体技术互补,对节能减排、产业转型升级、催生  相似文献   

13.
<正>一、氧化锌(ZnO)半导体材料作为典型的第3代半导体材料,半导体氧化锌(ZnO)激子结合热能高达60meV,远大于室温下的热能(26meV)。这样,ZnO可以通过激子-激子散射的方式实现受激发射,这种模式比半导体中通常采用的电子-空穴等离子体的受激发射模式的阈值低2个量级以上。因此与Ⅲ族氮化物相比,ZnO其在固态照明、短波长半导体激光和紫外光电探测等领域有明显的优势,已经成为目前半导体研究领域中的热点。然而,目前这些研究主要集中在ZnO的光学性能方面,其压电性能往  相似文献   

14.
<正>氮化镓(Gallium Nitride,Ga N)基半导体材料是继硅和砷化镓基材料后的新一代半导体材料,被称为第3代半导体材料。氮化镓材料由于具有禁带宽度大、击穿电场高、介电常数小、电子饱和漂移速度高、抗辐射能力强和良好的化学稳定性等独特的特性,在光电子器件和高温、高频大功率电子等微电子器件领域有广阔的应用前景[1.2]。氮化镓材料的应用首先是在发光器件领域取得重大突破的。1991年,日  相似文献   

15.
封装材料     
为了保护晶体管和大规模集成电路(LSI)等半导体元器件免受外来之热、湿气、放射线等因素的影响而能使其密封起来的材料叫封装材料。在半导体器件向高集成化、高功能化、小型化和薄型化发展的今天,封装材料的作用越来越重要。半导体元器件的封装方法大致有两种:一是陶瓷、玻璃等的气密封装;二是用环氧树脂和有机硅树脂进行树脂封装。树脂封装  相似文献   

16.
<正>随着5G移动通讯技术、高压智能电网、高速轨道交通、新能源汽车、移动互联、海亮光存储、可见光通讯等市场巨大拉动,全球对以碳化硅(Si C)和氮化镓(Ga N)为代表的具有带宽度大、击穿电场高、热导率大、电子饱和漂移速率高、抗辐射能力强等特征的宽禁带半导体材料(亦称"第3代半导体材料")活跃度日益提高,产业进入了快速发展阶段。法国悠乐(Yole)公司7月公布的最新数据显  相似文献   

17.
半导体纳米材料虽然制备方法很多,但因其粒径小,表面能高,易团聚而不能得到广泛应用。若它同聚合物相结合,聚合物可起到载体作用,不仅可以防止团聚,而且可以控制粒子的尺寸大小和分布及提高稳定性,更重要的是,若想将粒子的特殊性能以材料形式付诸应用,必须实现它以某种形式与体相材料相复合与组装。聚合物具有良好的加工性能,使其在复合和组装半导体纳米粒子方面较其它材料有优势。利用半导体纳米粒子的光电特性,可将复合物制备成实用的新型非线性光学材料、电致发光、激光放大材料等,大大拓宽其应用范围。因而导电聚合物-纳米半导体微粒复合膜的研究虽然只是近十年才发展起来的,但其进展十分引人注目,并已成为近几年来材料研究的热点。 利用电化学组装法(electrochemical-assembly,ECA)在不同基底表面上依次组装和制备了对氨基苯硫酚(PATP)和聚苯胺(PANI)薄膜,并采用电化学组装(ECA)-电沉积法联用技术和电化学组装(ECA)-溶胶凝胶法(sol-gel)联用技术制备了TiO_2-PANI复合膜、ZnO-PANI复合膜和CdS-PANI复合膜。利用扫描隧道显微镜、电化学石英微天平、X-光电子能谱、拉曼光谱、循环伏安法、荧光光谱和光电流谱等技术研究PATP在金电极表面组装的动力学过程和PANI薄膜的表面形貌、结构和光电化学性质,并在  相似文献   

18.
<正>相比第1代与第2代半导体材料,第3代半导体材料是具有较大禁带宽度(禁带宽度2.2eV)的半导体材料。第3代半导体主要包括碳化硅(SiC)、氮化铝(AlN)、氮化镓(GaN)、金刚石、氧化锌(ZnO),其中,发展较为成熟的是SiC和GaN。第3代半导体材料在导热率、抗辐射能力、击穿电场、电子饱和速率等方面  相似文献   

19.
<正>东京大学首次发现,半导体塑料(高分子半导体)中可以进行离子交换。离子交换广泛应用于净水、蛋白质分离纯化和工业污水处理等,是生活中不可或缺的化学现象。本次研究发现一个创新性原理,即利用这种极为普遍的离子交换,可以控制半导体塑料的电子状态。利用该原理,研究小组精确控制了半导体塑料的电子状态,成功实现了具有金属性质的塑料。  相似文献   

20.
由于在半导体材料生产中所使用的氯化氢要求纯度高,这就决定了对其中的杂质(特别是含氧物,如O2、CO、CO2等)含量作直接高灵敏的控制和检测的必要性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号