首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究了同步亚硝化、厌氧氨氧化和反硝化(SNAD)-生物移动床(MBBR)工艺对煤气化废水脱氮的处理效果。结果表明,通过控制低DO含量和低污泥停留时间(SRT)的方法防止了好氧反应器中硝化菌的积累,为后续SNAD反应器提供了合适的进水。煤气化废水经好氧反应器去除COD后进入SNAD MBBR进行脱氮,控制SNAD反应器温度为30~33℃,DO的质量浓度为0.5~0.8 mg/L,p H为7.5~7.7,HRT为24 h。TN去除率达到90.7%,出水TN、NH_4~+-N的质量浓度分别低于20、5 mg/L,COD去除率达到89.6%,出水COD低于60 mg/L。运行25 d后,SNAD反应器中厌氧氨氧化菌的种类由接种时的Candidatus Brocadia变为Candidatus Kuenenia。  相似文献   

2.
部分亚硝化-厌氧氨氧化联合工艺是一种新型的废水脱氮工艺。实验采用模拟废水,进水氨氮浓度为600 mg/L。亚硝化SBR反应器在温度为30℃、HRT为24 h、DO≈0.2 mg/L的运行条件下,将废水中的一部分氨氮氧化成亚硝氮,并使得亚硝化SBR反应器出水中NH4+-N和NO2--N比值接近1∶1.32后,再作为厌氧氨氧化SBR反应器进水;厌氧氨氧化SBR反应器在温度为37℃、HTR为24 h的运行条件下,将氨氮和亚硝氮转化为N2。实验结果表明,部分亚硝化-厌氧氨氧化联合工艺脱氮效果较好,废水中氮的去除率可达94.44%。  相似文献   

3.
厌氧序批式活性污泥法,即厌氧序批式反应器(ASBR)是一种以序批间歇运行操作为主要特征的废水厌氧生物处理工艺,依赖于形成沉降性能良好的生物体,采用单个反应器完成处理的序列操作,即进水、反应、沉降和排水。实验的设计方案是将ASBR工艺与厌氧氨氧化(ANAMMOX)技术组合应用于处理腈纶厂排放的不能够达标排放的高浓度有机废水。其中,ANAMMOX技术具有良好的有机污染物分解去除效果,氨氮(NH4+-N)的进水浓度为283.2 mg/L,经ANAMMOX技术和ASBR工艺处理后的腈纶废水出水NH4+-N浓度为20 mg/L,去除率达95%;亚硝态氮(NO2--N)的进水浓度为300 mg/L左右,经ANAMMOX技术和ASBR工艺处理后的腈纶废水出水中NO2--N未检出(NO2--N浓度为0 mg/L),去除率达100%;化学需氧量(CODcr)的进水浓度为306.3 mg/L,经ANAMMOX技术和ASBR工艺处理后的腈纶废水出水CODcr值为44 mg/L,去除率达85%。从污水处理工程应用角度看,ANAMMOX过程比传统硝化-反硝化脱氮方式具有明显优势,能够达到企业清洁生产的要求与目的。  相似文献   

4.
ANAMMOX反应器快速启动及对反硝化聚磷的影响研究   总被引:1,自引:0,他引:1  
硝化菌的生长快于厌氧氨氧化菌,通过培育硝化生物膜,利用硝化菌的基质多样性和代谢多样性,可使生物膜由催化硝化反应过渡到催化厌氧氨氧化反应,加速ANAMMOX反应器的启动。经过2个月的运行,成功地启动了ANAMMOX反应器,而且反应器运行性能稳定。将厌氧氨氧化引入反硝化聚磷系统中,试验结果表明,在COD和TP的去除率保持基本不变的情况下,NH4+-N的去除率从23%上升到87%,TN的去除率从88%提高到93%,出水NH4+-N和NO2--N的质量浓度均低于2mg/L。  相似文献   

5.
单一反应器城市生活污水深度处理实验研究   总被引:3,自引:0,他引:3  
采用单一反应器.在常温低溶氧(DO)条件下,进行了深度处理城市污水的实验研究.结果表明,向具有亚硝化功能的反应器中接种厌氧氨氧化菌后,可实现城市污水的同步亚硝化-厌氧氨氧化反应,TN去除率达到92.4%;继续向反应器接种聚磷菌后,可实现单一反应器内城市污水的深度处理,相应的去除率分别为93.6%、77.1%、99.3%.系统运行过程中,可将DO=1mg/L作为反应终点的指示参数;TN和NH+4-N在反应过程中的浓度变化有较好的线性相关关系,相关系数均大于0.999.  相似文献   

6.
利用上向流生物膜反应器进行了厌氧氨氧化(ANAMMOX)工艺的启动及运行研究。在常温下,以含氨氮模拟废水为进水,采用反硝化菌成功地培养出ANAMMOX菌,启动期间进水氨氮和亚硝态氮浓度分别为8-36mg/L和8-43mg/L,启动结束氨氮去除率稳定在52%以上。研究表明,厌氧氨氧化反应的适宜温度在20℃以上,pH值为7.3~8.2,氨氮容积负荷处于0.14~0.25kg/(m^3·d)之间,C/N比在2.6—4.7之间。根据Monod方程和实验,得到ANAMMOX反应动力学模型,与实验数据相关关系显著,具有实际参考价值。  相似文献   

7.
部分短程硝化和厌氧氨氧化技术的研究主要集中在高氨氮废水方面,对低氨氮浓度生活污水的研究相对较少。使经过除碳和部分短程硝化后的实际生活污水进入厌氧氨氧化UASB反应器,探究生活污水对成熟厌氧氨氧化颗粒污泥的影响。结果表明,当厌氧氨氧化UASB反应器的进水由配水变为生活污水后,反应器出水中氨氮浓度可降到5 mg·L~(-1)以下,亚硝态氮浓度可降到1 mg·L~(-1)以下,但是硝态氮的生成量高于理论值,可能是溶解氧被带入UASB反应器使硝化作用增强。UASB反应器内厌氧氨氧化污泥颜色由红色变为红黑色,T-EPS含量减少,PN/PS由1.13增大到3.66,沉降性变好,反应器内污泥中厌氧氨氧化菌Candidatus Brocadia所占比例由17.7%减少为14.4%,系统内AOB和NOB菌的含量增加,如果能够降低进入UASB反应器的溶解氧,有可能会减少出水硝氮,达到较好总氮去除效果。  相似文献   

8.
采用序批式活性污泥法反应器(SBR)处理人工模拟高NH_4~+-N含量废水,研究半短程硝化的调控过程及微生物群落结构变化。结果表明,在NH_4~+-N的质量浓度140 mg/L、低DO含量(质量浓度约1.0 mg/L)和低游离氨(FA)含量(质量浓度约1.6 mg/L)条件下运行28 d后,开始出现NO_2~--N积累现象。提高进水NH_4~+-N的质量浓度至180mg/L后,NO_2~--N积累率上升至85%以上。经144 d的持续调控,出水ρ(NO_2~--N)/ρ(NH_4~+-N)保持在理论值1.32附近。在反应器运行过程中微生物群落多样性逐渐减少,而微生物群落丰富度仅在适应阶段迅速下降。主要功能菌氨氧化菌(AOB)相对丰度由接种时的0.12%上升至实现半短程硝化后的17.97%,其中,优势菌属为Nitrosomonas。而亚硝酸盐氧化菌(NOB)相对丰度最终保持在1.5%左右,说明调控方式可抑制NOB并促进AOB增殖。  相似文献   

9.
序批式生物膜反应器常温亚硝化启动试验研究   总被引:1,自引:0,他引:1  
常温条件下,采用序批式生物膜反应器处理城市生活污水经A/O处理的二级出水,研究曝气量、温度等对亚硝化启动的影响.试验初期反应器自然挂膜,采用高浓度游离氨(FA)和低浓度溶解氧(DO)联合抑制的方法抑制亚硝酸盐氧化菌(NOB)的生长,使氨氧化菌(AOB)成为反应器内的优势菌种.试验结果表明12d即可完成序批式生物膜反应器硝化生物膜的培养和富集,挂膜速度较快;在不影响亚硝化反应的前提下,低浓度DO可以有效抑制NOB的生长,有利于AOB成为反应器内优势菌种,且不影响进水氨氮转化率;低氨氮浓度条件下,较低的温度对AOB的活性有抑制作用,而缩短曝气时间并不能稳定提高亚硝酸盐氮的积累率.  相似文献   

10.
厌氧氨氧化前置亚硝化反应器启动及稳定研究   总被引:2,自引:0,他引:2  
采用序批式活性污泥法反应器(SBR),接种好氧硝化污泥,通过FA含量、DO含量和碱度3个控制因素研究了半亚硝化反应器启动及控制条件简化后亚硝化稳定性的变化。结果表明,在3个控制因素下,半亚硝化反应器能够在16 d后成功启动,出水NO2--N与NH4+-N的质量比维持在1左右。当取消碱度控制时,出水水质出现一些波动,但基本稳定。当仅通过质量浓度为0.6 mg/L的DO控制时,出水NO2--N与NH4+-N的质量比仍维持在1左右。说明在半亚硝化厌氧氨氧化联合工艺中仅通过DO含量控制可以实现亚硝化稳定的运行,能够满足厌氧氨氧化工艺进水基质的要求。  相似文献   

11.
常温低氨氮污水生物滤池CANON工艺的实现   总被引:3,自引:0,他引:3       下载免费PDF全文
王俊安  李冬  张杰  李占  陶晓晓 《化工学报》2010,61(6):1528-1533
基于厌氧氨氧化反应的生物自养脱氮是目前污水处理中最为经济的脱氮途径。采用装有火山岩活性生物陶粒滤料的反应器,在常温(8~25℃)条件下对低NH4+-N(60~90mg.L-1)城市污水进行试验研究,通过改变曝气等运行工况,经过硝化自然挂膜、优选亚硝酸细菌和培养厌氧氨氧化菌3个阶段之后,实现了生物滤池同步亚硝化/厌氧氨氧化生物自养脱氮。结果表明,DO控制可作为反应器启动的主要控制因子,通过在生物滤池上方水柱中进行曝气和处理水携氧内循环联合的方式,可以实现对生物膜系统内DO浓度的良好控制。运行过程中可以通过pH值的变化来对反应周期进行判断,pH值的第二个突跃点是系统反应周期结束的标志。  相似文献   

12.
宋晓智 《净水技术》2021,40(z1):95-98
研究采用一段式厌氧氨氧化处理养猪废水的可行性,分析DO、pH、温度对脱氮效率的影响,以及在最佳DO、pH、温度时的容积负荷,并与硝化反硝化技术进行了比较.结果 表明,厌氧氨氧化可用作养猪废水的脱氮工艺,最佳的控制参数:DO为0.8 mg/L、pH值为7.9~8.0、温度为35℃、容积负荷为1.49 kg N/(m3·d).与硝化反硝化脱氮相比,一段式厌氧氨氧化节省占地和运行费用.  相似文献   

13.
垃圾渗滤液作为一种难处理的有机废水,主要通过生物法对其进行处理。利用陈垃圾反应器对渗滤液进行处理,稳定运行的反应器中存在厌氧氨氧化菌、好氧硝化菌和反硝化菌,其中进行的反应包括好氧硝化反应、厌氧氨氧化反应和异养反硝化反应。  相似文献   

14.
以14 L序批式活性污泥反应器(SBR)处理含盐生活污水,控制曝气体积流量60 L/h、时间300 min,考察不同盐度(NaCl)SBR内微生物活性变化,并确定反应器脱氮及N_2O释放特性。结果表明,盐度对各菌群抑制程度亚硝态氮氧化菌(NOB)氨氧化菌(AOB)碳氧化菌。盐度10 g/L,AOB和NOB受抑制程度较低,而N_2O还原受明显抑制,N_2O产率由盐度0时的5.14%增至10 g/L时的7.96%。盐度增至20 g/L,AOB和NOB均受到明显抑制,系统内亚硝化率达90%以上。系统淘洗出NOB,由全程硝化转变为短程硝化过程。NO_2~--N大量积累和AOB相对含量增加,为低含氧条件下AOB的好氧反硝化提供了条件,高盐度对氧化亚氮还原酶活性抑制也导致了系统N_2O释放量增加。  相似文献   

15.
采用部分硝化-厌氧氨氧化工艺处理高污染负荷的养猪场废水,经过39 d的静态培养以及141 d的动态培养,成功启动厌氧氨氧化工艺,其COD去除率为平均76.30%、最高为90.42%;TN去除率平均为63.43%、最高达到71.03%;平均TN去除负荷为0.11 kg/(m3·d)、最高为0.43 kg/(m3·d)。试验结果表明,在高污染负荷条件下,部分硝化阶段,DO和pH对亚硝化作用有较大影响,当为亚硝化反应器出水DO的质量浓度在0.4~0.6 mg/L、pH在7.2~7.5时效果最佳;厌氧氨氧化阶段,当进水中COD低于350 mg/L、进氨氮的质量浓度低于376.2 mg/L时,厌氧氨氧化反应才不会受到抑制。  相似文献   

16.
阐述了污水脱氮的反应工艺,综述对比了厌氧氨氧化(ANAMMOX)工艺、短程硝化反硝化(SHARON)工艺、限氧自养硝化-厌氧反硝化(OLAND)工艺、短程硝化-厌氧氨氧化(SHARN-ANAMMOX)工艺和单相CANON(SHARON-ANAMMOX)这五种生物脱氮工艺工作原理,脱氮效果和工艺的优缺点。  相似文献   

17.
为了研究电气石对活性污泥驯化厌氧氨氧化菌的影响,设置2个ASBR反应器,其中R2投加电气石与R1反应器形成对照,将曝气池的好氧活性污泥和河流厌氧底泥按体积1:1混合,均匀倒入2个反应器中进行驯化培养。经过100多天,2个反应器均出现红褐色活性污泥,经过126天培养R2反应器总氮去除负荷最高274.61mg/(L?d),未添加电气石的R1反应器总氮去除负荷最高225.27mg/(L?d)。R2反应器能够更好的应对总无机氮负荷骤增的情况。  相似文献   

18.
采用升流式厌氧流化床反应器,研究高浓度厌氧氨氧化工艺的脱氮效能。接种普通好氧活性污泥,以低浓度配水(NH_4~+-N 60 mg/L,NO_2~--N 50 mg/L)驯化厌氧氨氧化菌,经150 d富集,填料表面形成红色生物膜,NH_4~+-N和NO_2~--N同步去除率高于80%,反应器成功启动;采用低基质进水(NH_4~+-N 60~300 mg/L,NO_2~--N 100~355 mg/L),随着进水容积负荷的增加,总氮去除负荷从0.39 kg/(m~3·d)提升至1.29 kg/(m~3·d);采用高基质进水(NH_4~+-N 390 mg/L,NO_2~--N 400 mg/L)时,总氮去除负荷降至1.08 kg/(m~3·d),150%回流能有效缓解基质对厌氧氨氧化菌的活性抑制,反应器总氮去除负荷逐渐恢复并升高至1.76 kg/(m~3·d),脱氮效能提高63%。  相似文献   

19.
以印染丝光高氨氮含量废水为研究对象,利用投加天然沸石粉的序批式活性污泥法反应器(ZSBR)实现高氨氮废水的亚硝化。结果表明,通过沸石对氨氮的吸附-解吸作用可以维持反应器内适宜的游离氨(FA)含量,从而实现ZSBR亚硝化的快速启动。系统在受到高含量FA的抑制作用后,通过控制进水氮负荷调控系统内较低的FA来恢复ZSBR的亚硝化。高通量测序分析表明,ZSBR内氨氧化菌(AOB)得到了快速增殖,而硝化菌(NOB)受到抑制被淘洗。对于高氨氮的丝光废水,通过改变充水比(单周期内进水体积与ZSBR总有效体积之比)控制进水氮负荷在合理的范围内,系统依然可以稳定运行,且最高氨氮转化去除负荷可达1.12 kg/(m~3·d)。  相似文献   

20.
厌氧氨氧化反应功能菌世代时间长,生长条件苛刻,反应过程和脱氮效果在有机物存在的条件下极易受到影响。因此,本文在快速启动ANAMMOX反应的方法基础上,通过连续添加8种有机碳源进行批次试验,探究有机物ANAMMOX反应的影响。结果表明,不同有机物对厌氧氨氧化系统的促进作用不同,氨氧化速率从高到低依次为乙酸钠、丙酸钠、蔗糖、乳糖、淀粉、戊酸和己酸。当浓度达到300mg/L时,乙酸钠反硝化性能优于丙酸钠。以硝态氮为底物时,大分子有机物(戊酸和己酸)对提高反硝化脱氮性能帮助很小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号