首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
Nafion修饰Pt/C电催化剂的制备与表征   总被引:1,自引:0,他引:1  
通过在合成过程中引入质子导体Nafion聚合物,制备了Pt/C-Nafion电催化剂。采用热重(TG)、元素分析(EDS)、X射线衍射(XRD)、透射电镜(TEM)及电化学方法对该催化剂进行了表征。结果表明,与Pt/C电催化剂相比,Pt/C-Nafion中Nafion聚合物的引入使得电催化剂的分散性有所提高,以Pt/C-Nafion为阴极催化剂的直接甲醇燃料电池阴极催化层中的电化学活性表面积(ECSA)达到23.61m2/gPt,比Pt/C催化剂提高近33.5%。  相似文献   

2.
采用微波多元醇法合成了Pt/C、Pt-M(Fe、Co、Ni)/C电催化剂,通过X-射线衍射仪(XRD)和透射电镜(TEM)测试手段对催化剂的微观结构、表面形貌等物理性能进行表征,并对其电化学性能进行了比较。测试结果表明:催化剂均高度分散在Vulcan XC-72碳载体上,Pt/C、Pt-Fe/C、Pt-Ni/C和Pt-Co/C电催化剂的平均粒径分别为:3.4、2.6、2.8、3.1 nm。在室温28℃下测得的电化学性能结果表明:合成催化剂在甲醇中的氧化活性高低顺序为:Pt-Fe/CPt-Co/CPt-Ni/CPt/C,催化剂电催化性的稳定性高低顺序为:Pt-Ni/CPt-Co/CPt-Fe/CPt/C,合成的Pt-M/C电催化剂催化性能均比Pt/C催化剂高,掺入合金Fe、Co和Ni后的Pt-M/C催化剂均具有较好的抗CO中毒的能力。  相似文献   

3.
采用乙二醇还原法制备了Pt含量为5%(质量分数)的Pt/C和Pt/FePO4/C催化剂,并用透射电镜(TEM)表征催化剂的形貌.催化剂中Pt粒子在载体上高度分散,且粒径均匀.Pt/FePO4/C和Pt/c催化剂的平均粒径分别为1.2nm和0.9 nm.实验结果表明,Pt/FePO4/C催化剂具有较Pt/C更高的电化学活性比表面积和催化氧还原的活性.分别利用两种催化剂制备PEMFC阴极,Pt的担量均为0.08mg/cm2.以氧气为阴极反应气时,采用Pt/FePO4/C和Pt/C的PEMFC单电池的峰值功率密度分别为763mW/cm2和663mW/cm2;阴极催化剂质量比功率分别为9.54kW/g Pt和8.29kW/gPt;即作为PEMFC阴极催化剂,Pt/FePO4/C具有更高的催化活性.  相似文献   

4.
反胶束法制备PEMFC电催化剂的研究   总被引:1,自引:0,他引:1  
朱科  张继炎  陈延禧 《电源技术》2005,29(11):730-733
在采用反胶束法制备PEMFC用Pt/C电催化剂时,比较了3种不同类型的表面活性剂,其中由阴离子表面活性剂十二烷基硫酸钠(SDS)组成的反胶束能制备出较小的Pt粒径,分布均匀的Pt/C电催化剂。降低反胶束中H2PtCl6水溶液的浓度,能减小催化剂中Pt的粒径,Pt(111)晶面间距也缩小,电催化活性提高。由该方法制备的Pt/C电催化剂的电化学性能与JohnsonMatthey公司的催化剂性能相当。由于反胶束法操作简便,所得催化剂粒径均匀,在PEMFC电催化剂制备方面具有较好的应用前景。  相似文献   

5.
Pt/C催化剂的制备与评价   总被引:1,自引:0,他引:1  
采用浸渍法和离子交换法制备了低担量的Pt/C催化剂,并利用透射电子显微镜(TEM)、循环伏安(CV)等方法对催化剂进行了表征。研究结果表明:离子交换法制备的Pt/C催化剂Pt颗粒的粒径仅为1.5~2.5nm,小于浸渍法制备的催化剂中Pt颗粒的粒径(3~4.5nm),从而有效地增大铂的活性表面积。将两种方法制备的催化剂应用于PEMFC中,在相同的操作条件下,离子交换法制备的催化剂性能要优越于浸渍法制备的催化剂。  相似文献   

6.
PEMFC用Pt/CNTs电催化剂研究进展   总被引:1,自引:0,他引:1  
许程  唐浩林  木士春  潘牧  袁润章 《电源技术》2004,28(10):652-655
采用碳纳米管(CNTs)取代导电碳黑合成质子交换膜燃料电池(PEMFC)用电催化剂是近几年来一个新的研究方向。本文从载体的比表面和电化学稳定性两方面对Pt/CNTs催化剂的优势进行了分析,结合现有的研究进展对Pt/CNTs和传统的Pt/C催化剂进行了性能比较,认为Pt/CNTs催化剂是有可能取代传统的Pt/C催化剂、使燃料电池突破价格瓶颈的关键技术之一。同时详细介绍了Pt/CNTs的合成方法与影响因素,并对其需要改进的部分进行了展望。  相似文献   

7.
还原温度对Pt/C催化剂性能的影响   总被引:1,自引:1,他引:0  
张焰峰  李忠  杨书廷  曹朝霞 《电池》2004,34(5):328-330
为了研究制备温度对质子交换膜燃料电池(PENFC)用Pt/C催化荆性能的影响,采用离子交换法在不同温度制备了Pt/C催化剂,并采用电化学工作站测试了不同温度样品的电催化活性,分别使用N2吸附、TEM、XRD测定了样品的孔隙、粒径和晶相结构.结果表明:当还原温度为800℃时,Pt/C催化剂具有较大的比表面积和较发达的孔隙结构,颗粒粒径较小,有利于O2还原的Pt(100)晶面含量较大,以样品为催化剂的PEMFC具有较高的功率输出,所以800℃是制备高催化活性的纳米Pt/C的合适温度.  相似文献   

8.
田建华  单忠强  付高翔  迟大赫 《电池》2003,33(4):228-230
采用浸渍还原法制备负载型Pt/C电催化剂,通过制备条件的优化和采用对载体碳材在流动N2气氛中的热处理技术,制备出平均粒径为3.2nm的Pt/C电催化剂;通过TEM测定了Pt颗粒尺寸和粒径分布;通过XRD确定了电催化剂中Pt的晶面分布;通过SEM观察了Pt/C电催化剂在膜电极表面的分布。采用自制单体PEMFC的电流-电压曲线评价了自制Pt/C电催化剂的性能。  相似文献   

9.
陈玲  王新东  郭敏 《电源技术》2006,30(6):439-442
以NdOx作为助催化剂,采用浸渍还原法合成了不同原子比例的PtRu-NdOx/C催化剂。首先研究了不同还原温度对PtRu/C催化剂的电催化性能的影响。X射线衍射光谱法(XRD)和循环伏安测试结果表明:当还原温度为90℃时,合成出的催化剂粒度最小,对甲醇电氧化的催化性能也最好。其次,通过能量散射X射线谱(EDX)、XRD、透射电子显微镜法(TEM)和循环伏安法、计时电流法等测试手段,研究了不同n(Pt)∶n(Ru)∶n(Nd)原子比例对PtRu-NdOx/C催化剂性能的影响。实验结果表明:n(Pt)∶n(Ru)∶n(Nd)原子比为3∶3∶1时,合成出的催化剂电催化性能较好;而且Pt与Ru以合金形式存在,而Nd的氧化物则以无定形态存在,催化剂粒子分布均匀,平均粒径在2nm左右。  相似文献   

10.
胶态Pt/C催化剂对甲醇的电催化氧化性能   总被引:3,自引:0,他引:3  
唐亚文  杨辉  李钢  邢巍  陆天虹 《电源技术》2003,27(Z1):157-159
研究了Pt金属载量为20%的碳载胶态Pt金属催化剂对甲醇的电催化氧化性能,并与E-TEK公司同类型催化剂进行了比较.X衍射光谱(XRD)和透射电镜(TEM)研究显示在胶态Pt/C催化剂中,Pt粒子的平均粒径为3.8 nm,并且具有良好的均一度.电化学研究显示尽管胶态Pt/C催化剂拥有相对较小的电化学活性面积,但对甲醇的电催化氧化性能却明显优于E-TEK公司的Pt/C催化剂,其原因应归结于利用有机溶胶法制得的胶态Pt/C催化剂拥有更合理的平均粒径.  相似文献   

11.
对商业Pt/C和PtRu/C催化剂进行真空加热处理,研究热处理对催化剂微观结构变化及甲醇氧化的影响.X射线衍射光谱法(XRO)和热重(TG)研究结果表明:低温(210℃以下)真空加热处理对Pt/C和PtRu/C催化剂活性金属组分的晶体结构和催化剂表面处于活性位置(Pt-C结合位置)的碳原子数没有较大影响.电化学测试结果表明:热处理后的商业Pt/C和PtRu/C催化剂对甲醇氧化活性均高于初始催化剂,而且180℃加热处理的Pt/C和PtRu/C催化剂对甲醇催化氧化性能最好,其电化学稳定性在热处理前后基本保持不变.  相似文献   

12.
Protonexchangemembranefuelcell (PEMFC)isoneofthefuelcellsdevelopedfastinrecentyears Inordertoloweritscost ,variousPt basedelectrocatalystsarepreparedtoincreasetheutilityandtoreducePtontheperunitareaoftheelectrode[1-3 ] Carbonnanotubes supportedPt (Pt/CNTs)catalystispreparedusingcar bonnanotubewithhighporosityandspecificsurfaceareaascarrierandiscomparedwithcarbon supported Pt (Pt/C)catalyst Becausecarbonnanotube (CNT )has particulardynamics ,electromagnetic ,physicalandchemicalperforman…  相似文献   

13.
PtCr/C-Nafion 膜氧电极的电催化活性   总被引:6,自引:2,他引:4  
氧还原电催化剂的研究对聚合物电解质膜燃料电池技术的发展具有极其重要的意义。实验表明某些碳载铂的二元合金可以改善聚合物电解质膜燃料电池中氧还原的电催化性能。本工作的目的是考察PtCr/C作为氧电极催化剂的活性。采用松木碳为载体和水合肼为还原剂,通过化学还原沉积法制得Pt/C和PtCr/C催化剂。通过涂层和热压得到催化剂-Nafion膜电极。用电流-电位极化和恒电流放电法研究了催化剂-Nafion膜电极的性能。与Pt/C-Nafion膜电极比较,PtCr/C-Nafion膜电极对氧的电化学还原显示出高的活性。热处理催化剂的活性比未热处理的高。XRD分析结果表明,热处理催化剂活性的提高看来主要是由晶格结构改变的结果引起的。  相似文献   

14.
燃料电池氧阴极催化剂的研究   总被引:7,自引:3,他引:4  
文纲要  李长志  孙公权 《电池》1999,29(3):110-112
以松木碳为载体,水合肼为还原剂,采用化学还原沉积法制备了Pt-Mn/C催化剂。通过涂敷和热压制得Pt-Mn/C-Nafion膜氧阴极。采用电流—电位极化和恒电流放电法研究了Pt-Mn/C-Nafion膜氧阴极的性能。与我们以前报导的Pt/C和Pt-Cr/C催化剂比较,Pt-Mn/C催化剂对氧的电还原显示出更高的活性。考察了Mn含量对电极性能的影响。另外,Pt-Mn/C催化剂经热处理后性能有较大的提高。XRD分析的结果表明,热处理催化剂活性的提高看来主要是由晶格结构改变的结果引起的。  相似文献   

15.
郑丁琴  刘慧勇  郭永榔 《电池》2006,36(6):420-422
采用浸渍法合成了Pt/C及Pt-SnO2/C催化剂。SEM结果表明:催化剂存在团聚现象,颗粒较大。循环伏安法(CV)研究表明:与Pt/C相比,Pt-SnO2/C不但降低了甲醇氧化的起峰电位(约0.2 V),并提高了电催化活性。SnO2有利于形成OH-吸附,加速了甲醇氧化中间体CO的脱附。  相似文献   

16.
为了研究Pt修饰非晶态催化剂对甲醇电催化氧化行为的影响,采用两步法合成了碳载Pt修饰非晶态CoSn合金催化剂。使用透射电镜和X射线衍射技术分析了CoSn/C前体和Pt-CoSn/C催化剂的形貌及晶体结构;利用循环伏安法和旋转圆盘电极技术测试电化学性能,比较了Pt/C、PtRu/C和Pt-CoSn/C催化剂对甲醇氧化的电催化活性和稳定性。结果表明,Pt修饰非晶态CoSn合金催化剂对甲醇氧化有较好的电催化性能,Pt用量显著降低。非晶态CoSn合金具有良好的质子和电子传导能力,提高了Pt对甲醇氧化的电催化活性;Pt-CoSn/C对甲醇电催化的质量活性和稳定性要优于PtRu/C催化剂。  相似文献   

17.
研究了N及Sn元素掺杂的TiO2(NTT)对Pt/C电催化活性的影响,并在全增湿及低增湿工况下,考察了NTT/Pt/C催化剂所构成的质子交换膜燃料电池(PEMFC)的性能。制备了N及Sn掺杂的TiO2,X射线光电子光谱法(XPS)、透射电子显微镜法(TEM)及X射线衍射光谱法(XRD)表征说明N及Sn元素已经掺入到TiO2中,其颗粒平均粒径为14.3nm,晶形为单一锐钛矿型。以不同比例混入Pt/C催化剂后,对NTT/Pt/C共混催化剂进行了循环伏安扫描和旋转圆盘电极测试,研究了其对Pt/C催化剂电化学活性面积及氧还原半波电位的影响;并在不同增湿条件下,在单电池中对NTT/Pt/C及Pt/C催化剂进行了测试。结果发现NTT不仅可以促进Pt/C催化剂活性,并且具有一定的保水能力,在低增湿工况下可以显著提升PEMFC的性能。  相似文献   

18.
回收质子交换膜燃料电池(PEMFC)失效的Pt/C催化剂,通过高温灼烧得到贵金属Pt渣。Pt渣经适量王水溶解、煮沸、浓缩和再稀释制成H2PtCl6溶液。以H2PtCl6为Pt的前驱体,采用无机胶体法重新制备出PEMFC用Pt/C催化剂。透射电子显微镜测试结果表明,采用优化的工艺条件所制备的Pt/C催化剂平均粒径为2.6nm,且分散性好、粒度均匀。X射线衍射分析表明,催化剂中Pt(111)晶面的相对含量较高,其面间距较小,且催化剂的结晶度略有降低,这些结构特点对催化氧还原反应是有利的。循环伏安法测试表明所制备的Pt/C催化剂对氢和氧电极过程具有良好的电催化性能。  相似文献   

19.
利用电化学方法研究了TiO2纳米管掺杂商业Pt/C催化剂(JM公司)对甲醇电氧化性能的影响.通过对不同掺杂量、不同制备方法等研究,利用循环伏安法和恒电位氧化法等手段,表明:掺杂20%TiO2纳米管的电催化剂对甲醇氧化具有较高活性,这可能是由于Pt和Ti之间产生的相互作用,使得甲醇更容易被活化,而二氧化钛本身携带的氧源,更有助于催化氧化甲醇反应的中间产物,减弱了Pt催化剂中毒程度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号