首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Azimuth and sound pressure level (SPL) tuning to noise stimulation was characterized in single-unit samples obtained from primary auditory cortex (AI) and in areas of the medial geniculate body (MGB) that project to AI. The primary aim of the study was to test the hypothesis that AI is an important site of synthesis of single-unit responses that exhibit both azimuth sensitivity (tendency for directionally restricted responsiveness) and nonmonotonic (NM) level tuning (tendency for decreased responsiveness with increasing SPL). This was accomplished by comparing the proportions of such responses in AI and MGB. 2. Samples consisted of high-best-frequency (BF) single units located in MGB (n = 217) and AI (n = 216) of barbiturate-anesthetized cats. The MGB sample was obtained mainly from recording sites located in two nuclei that project to AI, the ventral nucleus (VN, n = 118) and the lateral part of the posterior group of thalamic nuclei (Po, n = 84). In addition, a few MGB units were obtained from the medial division (n = 8) or uncertain locations (n = 7). Each unit's responses were studied using noise bursts presented from azimuthal sound directions distributed throughout 180 degrees of the frontal hemifield at 0 degrees elevation. SPL was varied over an 80-dB range in steps of < or = 20 dB at each location. Similarities and differences in azimuth and level tuning were evaluated statistically by comparing the AI sample with the entire MGB sample. If they were found to differ, the AI, VN, and Po samples were compared. 3. Azimuth function modulation was used as a measure of azimuth sensitivity, and its mean was greater in AI than in MGB. NM strength was defined as the percentage reduction in level function value at 75 dB SPL and its mean was greater in AI (showing a greater tendency for decreased responsiveness) than in MGB. Azimuth-sensitive (AS) NM units were identified by jointly categorizing each sample according to both azimuth sensitivity (sensitive and insensitive categories) and NM strength (NM and monotonic categories). AS NM units were much more common in the AI sample than in any of the MGB samples, suggesting that some such responses are synthesized in AI. 4. A vast majority of AI NM units have been reported to be AS, showing a preferential association (linkage) between these two response properties. This finding was confirmed in AI, but was not found to be the case in MGB. This suggests that a linkage between these response properties emerges in the cortex, presumably as a result of synthesis of NM AS responses. Although the functional significance of the linkage is unknown, NM responses may reflect excitatory/inhibitory antagonism that provides AS AI neurons with sensitivity to stimulus features beyond that which is present in MGB. 5. Breadth of azimuth tuning of AS cells was measured as the portion of the frontal hemifield over which azimuth function values were > 75% of maximum (preferred azimuth range, PAR). PARs were broadly distributed in each structure, and mean PAR was narrower in AI than in MGB. A preferred level range (PLR) was defined for NM level functions as the range over which values were > 75% of maximum, and mean PLRs were similar in each sample. There was a weak, but significant, positive correlation between PARs and PLRs in AI but not in MGB. This further suggests a linkage between azimuth and level tuning in AI that does not exist in MGB. 6. Best azimuth (midpoint of the PAR) was used to classify cells as contralateral preferring, ipsilateral preferring, midline preferring, or multipeaked. Samples from AI and MGB exhibited similar distributions of these categories. Contralateral-preferring cells represented a majority of each sample, whereass midline-preferring, ipsilateral-preferring, and multipeaked cells each represented smaller proportions. This suggests that the azimuth preference distribution in AI largely reflects that in MGB. 7. A best SPL was defined as the midpoint of the PLR. This wa  相似文献   

2.
Fear conditioning modifies the processing of frequency information; receptive fields (RFs) in the auditory cortex and the medial geniculate body (MGB) are altered to favor processing the frequency of the conditioned stimulus/stimuli (CS) over the pretraining best frequency (BF) and other frequencies. This experiment was designed to determine whether brief conditioning in the waking state produces RF plasticity that is expressed under general anesthesia. Guinea pigs bearing electrodes in the MGB received 20 trials on tone-shock pairing in a single training session. RFs were determined with animals under ketamine anesthesia before conditioning and 1–3 hrs and 24 hrs after conditioning. Frequency-specific RF plasticity was evident for both postconditioning periods: The BF shifted toward or to the CS frequency, responses to the BF decreased, and responses to the CS increased. Broadly tuned cells developed greater RF plasticity than narrowly tuned neurons. Results demonstrate that the specific neuronal results of brief learning experiences can be expressed in the anesthetized brain. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

3.
This study investigated the parafascicular (PF) neuronal nociceptive responses and their modulation following electrical stimulation of the locus coeruleus (LC) and intrathecal (i.t.) or intracerebroventricular (i.c.v.) administration of two alpha-adrenoceptor antagonists, the alpha2-antagonist, yohimbine, and the alpha1-antagonist, prazosin. The main results were as follows: (1) the nociceptive evoked discharges in PF neurons were suppressed by preceding stimulation of LC; (2) the suppressive effect of LC stimulation on PF neurons was replaced by a facilitatory effect following pretreatment of i.t. yohimbine in 14 units tested, while i.t. prazosin failed to alter the LC-induced suppression, even when the prazosin dose was doubled; (3) i.c.v. pretreatment with prazosin strengthened the suppressive effect of LC stimulation on PF neurons; (4) i.c.v. norepinephrine (NE) administration induced, in PF neurons, a biphasic response to noxious stimulation; an early, brief (about 10 min) inhibitory effect followed by a late, long-lasting facilitatory effect; and (5) i.c.v. pretreatment of yohimbine or prazosin prevented the inhibitory or facilitatory responses released by NE, respectively. These results provide evidence that: (1) the LC-descending projections exhibit a suppressive effect on nociceptive transmission at the spinal level through alpha2-receptors; and (2) the LC-ascending projections exhibit dual effects, facilitatory and inhibitory, at the medial thalamus (PF) level through alpha1- and alpha2-receptors, respectively.  相似文献   

4.
Monaural spectral contrast mechanism for neural sensitivity to sound direction in the medial geniculate body of the cat. J. Neurophysiol. 78: 2754-2771, 1997. Central auditory neurons vary in sound direction sensitivity. Insensitive cells discharge well to all sound source directions, whereas sensitive cells discharge well to certain directions and poorly to others. High-frequency neurons in the latter group are differentially sensitive to binaural and monaural directional cues present in broadband noise (BBN). Binaural directional (BD) cells require binaural stimulation for directional sensitivity; monaural directional (MD) cells are sensitive to the direction of monaural stimuli. A model of MD sensitivity was tested using single-unit responses. The model assumes that MD cells derive directional sensitivity from pinna-derived spectral cues (head related transfer function, HRTF). This assumption was supported by the similarity of effects that pinna orientation produces on locations of HRTF patterns and on locations of MD cell azimuth function peaks and nulls. According to the model, MD neurons derive directional sensitivity by use of excitatory/inhibitory antagonism to compare sound pressure in excitatory and inhibitory frequency domains, and a variety of observations are consistent with this idea. 1) Frequency response areas of MD cells consist of excitatory and inhibitory domains. MD cells exhibited a higher proportion of multiple excitatory domains and narrower excitatory frequency domains than BD cells, features that may reflect specialization for spectral-dependent directional sensitivity. 2) MD sensitivity requires sound pressure in excitatory and inhibitory frequency domains. Directional sensitivity was evaluated using stimuli with frequency components confined exclusively to excitatory domains (E-only stimuli) or distributed in both excitatory and inhibitory domains (E/I stimuli). Each of 13 MD cells that were tested exhibited higher directional sensitivity to E/I than to E-only stimuli; most MD cells exhibited relatively low directional sensitivity when frequency components were confined exclusively to excitatory domains. 3) MD sensitivity derives from excitatory/inhibitory antagonism (spectral inhibition). Comparison of responses to best frequency and E/I stimuli provided strong support for spectral inhibition. Although spectral facilitation conceivably could contribute to directional sensitivity with direction-dependent increases in response, the results did not show this to be a significant factor. 4) Direction-dependent decreases in responsiveness to BBN reflect increased sound pressure in inhibitory relative to excitatory frequency domains. This idea was tested using the strength of two-tone inhibition, which is a function of stimulus levels in inhibitory relative to excitatory frequency domains. The finding that two-tone inhibition was stronger at directions where BBN responses were minimal than at directions where they were maximal supports the model.  相似文献   

5.
Experiments were performed on 40 adult rabbits immobilized with Flaxedil. The effect of stimulation of amygdaloid complex on the click evoked potential of Woolsey's AI, AII and the auditory cortex behind the rhinal sulcus (ACBRS) was examined by single unit analysis. The results showed that stimulation of lateral nucleus and basal nucleus of amygdala could induce either a facilitory or an inhibitory effect on the evoked potential and the unit discharges. The latency of the inhibitory effect was about 10-25ms, and lasted for 20-115ms. A facilitory effect with a latency as short as 2ms was also observed in one animal. The experimental results indicate that the effect of amygdaloid complex stimulation as transmitted through polysynaptic circuit while the facilitatory effect was monosynaptic. The functional significance of the amygdaloid effect was discussed.  相似文献   

6.
The modulatory effects of electrical and chemical (glutamate) stimulation in the rostral ventromedial medulla (RVM) on spinal nociceptive transmission and a spinal nociceptive reflex were studied in rats. Electrical stimulation at a total 86 sites in the RVM in the medial raphe nuclei (n = 54) and adjacent gigantocellular areas (n = 32) produced biphasic (facilitatory and inhibitory, n = 43) or only inhibitory (n = 43) modulation of the tail-flick (TF) reflex. At these 43 biphasic sites in the RVM, facilitation of the TF reflex was produced at low intensities of stimulation (5-25 microA) and inhibition was produced at greater intensities of stimulation (50-200 microA). At 43 sites in the RVM, electrical stimulation only produced intensity-dependent inhibition of the TF reflex. Activation of cell bodies in the RVM by glutamate microinjection reproduced the biphasic modulatory effects of electrical stimulation. At biphasic sites previously characterized by electrical stimulation, glutamate at a low concentration (5 nmol) produced facilitation of the TF reflex; a greater concentration (50 nmol) only inhibited the TF reflex. In electrophysiological experiments, electrical stimulation at 62 sites in the RVM produced biphasic (n = 26), only inhibitory (n = 26), or only facilitatory (n = 10) modulation of responses of lumbar spinal dorsal horn neurons to noxious cutaneous thermal (50 degrees C) or mechanical (75.9 g) stimulation. Facilitatory effects were produced at lesser intensities of stimulation and inhibitory effects were produced at greater intensities of stimulation. The apparent latencies to stimulation-produced facilitation and inhibition, determined with the use of a cumulative sum method and bin-by-bin analysis of spinal neuron responses to noxious thermal stimulation of the skin, were 231 and 90 ms, respectively. The spinal pathways conveying descending facilitatory and inhibitory influences were found to be different. Descending facilitatory influences on the TF reflex were conveyed in ventral/ventrolateral funiculi, whereas inhibitory influences were conveyed in dorsolateral funiculi. The results indicate that descending inhibitory and facilitatory influences can be simultaneously engaged throughout the RVM, including nucleus raphe magnus, and that such influences are conveyed in different spinal funiculi.  相似文献   

7.
To test the effects of complex visual motion stimuli on the responses of single neurons in the middle temporal visual area (MT) and the medial superior temporal area (MST) of the macaque monkey, we compared the response elicited by one object in motion through the receptive field with the response of two simultaneously presented objects moving in different directions through the receptive field. There was an increased response to a stimulus moving in a direction other than the best direction when it was paired with a stimulus moving in the best direction. This increase was significant for all directions of motion of the non-best stimulus and the magnitude of the difference increased as the difference in the directions of the two stimuli increased. Similarly, there was a decreased response to a stimulus moving in a non-null direction when it was paired with a stimulus moving in the null direction. This decreased response in MT did not reach significance unless the second stimulus added to the null direction moved in the best direction, whereas in MST the decrease was significant when the second stimulus direction differed from the null by 90 degrees or more. Further analysis showed that the two-object responses were better predicted by taking the averaged response of the neuron to the two single-object stimuli than by summation, multiplication, or vector addition of the responses to each of the two single-object stimuli. Neurons in MST showed larger modulations than did neurons in MT with stimuli moving in both the best direction and in the null direction and the average better predicted the two-object response in area MST than in area MT. This indicates that areas MT and MST probably use a similar integrative mechanisms to create their responses to complex moving visual stimuli, but that this mechanism is further refined in MST. These experiments show that neurons in both MT and MST integrate the motion of all directions in their responses to complex moving stimuli. These results with the motion of objects were in sound agreement with those previously reported with the use of random dot patterns for the study of transparent motion in MT and suggest that these neurons use similar computational mechanisms in the processing of object and global motion stimuli.  相似文献   

8.
Type II units in the dorsal cochlear nucleus (DCN) are characterized by vigorous but nonmonotonic responses to best frequency tones as a function of sound pressure level, and relatively weak responses to noise. A model of DCN neural circuitry was used to explore two hypothetical mechanisms by which neurons may be endowed with type II unit response properties. Both mechanisms assume that type II units receive excitatory input from auditory nerve (AN) fibers and inhibitory input from an unspecified class of cochlear nucleus interneurons that also receive excitatory AN input. The first mechanism, a lateral inhibition (LI) model, supposes that type II units receive inhibitory input from a number of narrowly tuned interneurons whose best frequencies (BFs) flank the BF of the type II unit. Tonal stimuli near BF result in only weak inhibitory input, but broadband stimuli recruit enough lateral inhibitors to greatly weaken the type II unit response. The second mechanism, a wideband inhibition (WBI) model, supposes that type II units receive inhibitory input from interneurons that are broadly tuned so that they respond more vigorously to broadband stimuli than to tones. Physiological and anatomical evidence points to the possible existence of such a class of neurons in the cochlear nucleus. The model extends an earlier computer model of an iso-frequency DCN patch to multiple frequency slices and adds a population of interneurons to provide the inhibition to model type II units (called 12-cells). The results show that both mechanisms accurately simulate responses of type II units to tones and noise. An experimental paradigm for distinguishing the two mechanisms is proposed.  相似文献   

9.
Responses evoked in anaesthetized or decerebrate cats by stimulation of afferents supplying the face, mouth, pharynx, larynx, tooth pulp and jaw muscles were recorded from single neurones located in the trigeminal (V) main sensory nucleus, V nucleus oralis, and adjacent regions. Many cells (both V-thalamic relay and non-relay with localized V mechanoreceptive cutaneous fields could be activated by stimulation of a number of these afferents. A particularly prominent short-latency (often monosynaptic) input was noted from the canine tooth pulp, stimulation of which is generally considered to elicit only responses of pain in man. Control experiments showed that pulp-evoked responses were not the result of stimulus spread to tissues outside the pulp. The interaction of these various inputs to neurones at this level of the V brain stem complex typically resulted in a prolonged period of inhibition that was sometimes preceded by a short-lasting facilitatory phase. This inhibitory effect was also apparent in neurones located outside the complex, although a late facilitatory phase was frequently also noted. Our findings indicate a significant nociceptive input to V main sensory-oralis neurones, a proportion of which relay directly to the ventrobasal thalamus. The interactions described may be involved in perceptual and reflex aspects of responses to noxious and innocuous V stimuli.  相似文献   

10.
The effects of nitrous oxide (75%) on the spinal dorsal born wide dynamic range (WDR) neuronal activity were studied in either spinal cord intact or spinal cord-transected cats. Extracellular activity was recorded in the dorsal horn from single WDR neurons responding to noxious and non-noxious stimuli applied to the cutaneous receptive fields on the left bind foot pads of intact or decerebrate, spinal cord-transected (L 1-2) cats. The experiment was divided into four sections as follows: (1) When 10 micrograms of bradykinin (BK) was injected into the femoral artery ipsilateral to the recording site as the noxious test stimulus in the spinal cord-transected cat, all of 6 WDR neurons gave excitatory responses which were not depressed by 75% nitrous oxide. (2) When the injection of 10 micrograms of BK into the femoral artery ipsilateral to the recording site was used in the spinal cord-intact cat, 6 of 15 WDR neurons (40%) gave excitatory responses, which were significantly depressed by 75% nitrous oxide, and 9 of 15 WDR neurons (60%) gave inhibitory responses, which were not affected by 75% nitrous oxide. (3) When 10 micrograms of bradykinin (BK) was injected into the femoral artery contralateral to the recording site as the noxious test stimulus in the spinal cord transected cat, 6 of 12 WDR neurons gave excitatory reasons, which were not depressed by 75% nitrous oxide. (4) When the injection of 10 micrograms of BK into the femoral artery contralateral to the recording site was used in the spinal cord-intact cat, 6 of 6 WDR neurons (100%) gave responses, which were affected by 75% nitrous oxide. We have observed that nitrous oxide reduces the excitation and inhibition of dorsal born WDR neuronal activities induced by BK injection in spinal cord-intact cats, but does not reduce the excitation of those in spinal cord-transected cats. This finding confirmed that the antinociceptive effect of nitrous oxide might be modulated by supraspinal descending inhibitory control systems. In addition our result showed that the supraspinal effect of nitrous oxide was mediated not only by an increase but also a decrease in a supraspinal descending inhibition.  相似文献   

11.
Subthreshold transcranial magnetic stimulation (TMS) over the motor cortex can shorten the simple reaction time in contralateral arm muscles if the cortical shock is given at about the same time as the reaction stimulus. The present experiments were designed to investigate whether this phenomenon is due to a specific facilitatory effect on cortical circuitry. The simple visual reaction time was shortened by 20-50 ms when subthreshold TMS was given over the contralateral motor cortex. Reaction time was reduced to the same level whether the magnetic stimulus was given over the bilateral motor cortices or over other points on the scalp (Cz, Pz). Indeed, similar effects could be seen with conventional electrical stimulation over the neck, or even when the coil was discharged (giving a click sound) near the head. We conclude that much of the effect of TMS on simple reaction time is due to intersensory facilitation, although part of it may be ascribed to a specific effect on the excitability of motor cortex.  相似文献   

12.
We studied the binaural properties of 72 neurons in the dorsal nucleus of the lateral lemniscus (DNLL) of the mustache bat. There are six main findings: 1) Conventional EI neurons that were excited by stimulation of the contralateral ear and inhibited by ipsilateral stimulation, comprise the majority (80%) of binaural DNLL cells. 2) For most EI neurons the quantitative features of their interaural intensity disparity (IID) functions, maximum inhibition, dynamic range and 50% point IIDs, were largely unaffected by the absolute intensity at the contralateral ear. 3) Although the net effect of the inhibition evoked by ipsilateral stimulation was to suppress discharges evoked by contralateral stimulation, our results indicate that the inhibitory inputs can act in three different ways. The first was a time-intensity trade, where increasing the intensity at the ipsilateral ear evoked inhibitory effects with progressively shorter latencies. The second way was that the latency of inhibition did not appear to decrease with ipsilateral intensity, but rather increasing ipsilateral intensity appeared only to increase the strength of the inhibition. The third way was that the lowest effective ipsilateral intensity suppressed the first spikes evoked by the contralateral stimulus and higher ipsilateral intensities then suppressed the later discharges of the train. Each of these inhibitory patterns was seen in about a third of the cells. 4) Neurons that had more complex binaural properties, such as the facilitated EI neurons (EI/F) and neurons that were driven by sound to either ear (EE neurons), represented about 20% of the binaural population. There were two types of EE neurons; those in which there was a simple summation of discharges evoked with certain IIDs, and those in which the spike-counts to binaural stimulation at certain IIDs were greater than a summation of the monaural counts and thus were facilitated. 5) All binaural neurons were strongly inhibited with IIDs that favored the ipsilateral ear. Our findings indicate that the more complex binaural types, the facilitated EI neurons (EI/F) as well as the two types of EE neurons, may be constructed from conventional EI neurons by adding inputs from several sources that impart the more complex features to these neurons. We propose four circuits that could account for the different binaural response properties that we observed. The circuits are based on the known connections of the DNLL and the neurochemistry of those connections. Finally, we compared the binaural properties of neurons in the mustache bat DNLL with those of neurons in the mustache bat inferior colliculus and lateral superior olive.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
The dorsal nucleus of the lateral lemniscus (DNLL) is a binaural nucleus whose neurons are excited by stimulation of the contralateral ear and inhibited by stimulation of the ipsilateral ear. Here we report on several features of the ipsilaterally evoked inhibition in 95 DNLL neurons of the mustache bat. These features include its dependence on intensity, its tuning and the types of stimuli that are capable of evoking it. Inhibition was studied by evoking discharges with the iontophoretic application of glutamate, and then evaluating the strength and duration of the inhibition of the glutamate evoked background activity produced by stimulation of the ipsilateral ear. Excitatory responses were evoked by stimulation of the contralateral ear with best frequency (BF) tone bursts. Glutamate evoked discharges could be inhibited in all DNLL neurons and the inhibition often persisted for periods ranging from 10 to 50 ms beyond the duration of the tone burst that evoked it. The duration of the persistent inhibition increased with stimulus intensity. Stimulus duration had little influence on the duration of the persistent inhibition. Signals as short as 2 ms suppressed discharges for as long as 30 ms after the signal had ended. The frequency tuning of the total period of inhibition and the period of persistent inhibition were both closely matched to the tuning evoked by stimulation of the contralateral ear. Moreover, the effectiveness of complex signals for evoking persistent inhibition, such as brief FM sweeps and sinusoidally amplitude and frequency modulated signals, was comparable to that of tone bursts at the neuron's excitatory BF, so long as the complex signal contained frequencies at or around the neuron's excitatory BF. We also challenged DNLL cells with binaural paradigms. In one experiment, we presented a relatively long (40 ms) BF tone burst of fixed intensity to the contralateral ear, which evoked a sustained discharge, and a shorter, 10 ms signal of variable intensity to the ipsilateral ear. As the intensity of the 10 ms ipsilateral signal increased, it generated progressively longer periods of persistent inhibition and thus the discharges were suppressed for periods far longer than the 10 ms duration of the ipsilateral signal. With interaural time disparities, ipsilateral signals that led contralateral signals evoked a persistent inhibition that suppressed the responses to the trailing contralateral signals for periods of a least 15 ms. This suggests that an initial binaural sound that favors the ipsilateral ear should suppress the responses to trailing sounds that normally would be excitatory if they were presented alone. We hypothesize a circuit that generates the persistent inhibition and discuss how the results with binaural signals support that hypothesis.  相似文献   

14.
The motor effects of stimuli delivered through four-channel, quadripolar macroelectrodes chronically implanted in the ventrolateral thalamus were studied in 20 awake cooperating human subjects. Single stimuli could inhibit voluntary contraction of the contralateral first dorsal interosseous muscle (FDI) for up to 200 ms. The inhibition was often followed by a rebound facilitation or by oscillatory activity. This inhibition appeared to arise from the ventrolateral thalamus and could not be obtained in other patients by stimulation of the periventricular grey matter (PVG), the globus pallidus internus (GPI), or the subthalamic nucleus (STN). The neural elements activated by the stimulus had a short chronaxie and a short refractory period, implying that they were large-diameter axons. Similar effects were obtained from each of the four electrodes in the row, suggesting that this fiber system lay parallel rather than perpendicular to the implanted macroelectrode. The inhibition resulting from a single stimulus was diminished by a prior stimulus or train of stimuli. A continuous train of stimuli produced inhibition for only the first 200 ms. We propose that the thalamic stimulus activates a neural network which includes thalamic relay cells and neurons of the thalamic reticular nucleus and that the inhibition of thalamic relay cells habituates with repeated stimuli. It has been suggested that parkinsonian rest tremor results from synchronization of the oscillatory activity of this network. If this is the case, continuous thalamic stimulation might disrupt this oscillation by diminishing the inhibitory phase.  相似文献   

15.
A previous experimental study (He et al., 1997) found 132 duration-selective neurons with long latencies of greater than 30 ms in the dorsal zone of cat auditory cortex. The mechanism by which such long-latency neurons integrate information during their latent period is investigated by analysis of the temporal relationship between the stimulus and neuronal response. In the present study, we developed a one-layer perceptron to examine the above temporal relationship of the experimental results. The acoustic stimulus was represented as a contiguous series of sequential short time epochs. The perceptron was trained by using the spike data as the desired outputs and the acoustic stimuli (in digital format) as the inputs. The adaptive weights between the outputs and the inputs after training indicated the temporal relationship between neuronal responses and the stimuli. The contribution of each time epoch of the stimulus could be either positive or negative: the positive contribution corresponds to excitatory input and the negative contribution to inhibitory input. Long-duration-selective neurons were found to receive mainly excitatory input along the entire effective stimulus duration. However, duration-tuned neurons received excitatory input for only the time period from the stimulus onset to their best durations, and inhibitory thereafter. The temporal integration pattern of short-duration-selective neurons was similar to duration-tuned neurons. However, short-duration-selective neurons received excitatory input only at the beginning of the stimulus. Each of the duration-threshold neurons integrated auditory information only for a restricted time period of the stimulus, suggesting that they have a time window over the stimulus time domain. Non-duration-threshold neurons have time windows extending from the stimulus onset onward. The assembly of duration-threshold neurons and non-duration-threshold neurons may collectively represent the time axis of the stimulus.  相似文献   

16.
Several models of Pavlovian conditioning assume that processing of an unconditioned stimulus/stimuli (UCS) is diminished by a CS with which it had been paired. Two experiments evaluated the hypothesis that UCS processing may be diminished by CS-dependent activation of the cerebellum. Experiment 1 showed that electrical brain stimulation (EBS) of the cerebellar interpositus nucleus diminished the peak amplitude of the rabbit's unconditioned eyeblink response. This effect was bilateral, was systematically related to the intensity of EBS, maximal 50 ms after the offset of EBS, and substantially reversed by naloxone. Experiment 2 showed that inactivating the contralateral red nucleus with γ-D-glutamylglycine blocked the decremental effect of interpositus stimulation. Implications for neural systems mediating the inhibitory effects of cerebellar activation and the antinociceptive role of noradrenergic and opioid systems in Pavlovian conditioning phenomena are discussed. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

17.
Three same–different matching experiments used strings of letters as stimuli to explore the influence of orthography, familiarity, and lexical meaningfulness on visual code formation for words. In Experiment 1, larger effects of lexical meaningfulness occurred under conditions of visual stimulus degradation than when stimuli were bright and easy to resolve. Experiments 2 and 3 included diagnostics of two strategies (selective or divided attention) and showed that either could occur, but that only one produced the interaction. In the selective or visual, pattern of results which was observed in Experiment 2, lexicality interacted with the visual quality of the stimulus display, and there was no influence of phonological confusability between the strings being matched. In the divided attention, or multicode, pattern, observed in Experiment 3, lexicality and visual quality produced additive effects, while phonological confusability interfered with different decisions. This suggests that decisions were based on multiple, potentially redundant codes—visual and phonological—and that in such a situation the facilitatory influence of lexicality on visual code formation does not occur. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

18.
The effects of the stimulus duration (10 to 300 ms) on the responses of chinchilla inferior colliculus neurons to pure tones were studied in 41 units. The responses of the majority of the neurons (90%) were classified as sustained, onset, pause with onset peak and pause without onset peak response patterns. Three neurons were found to have response to the stimulus offset (offset response pattern). One neuron responded to the sound with the decrease of the spontaneous discharge rate (inhibitory response pattern). The responses restricted within the stimulus duration could be simply predicted from the peristimulus time histogram (PSTH) to the longer duration. The leading part of the PSTH to the longer stimulus duration resembled that to the shorter stimulus duration. The function of the spike number versus duration was correlated with the PSTH patterns. The response following the stimulus offset (including inhibitory response) could vary with the stimulus duration nonmonotonically and show a band-pass or band-reject property. Overall, four (about 10%) of the neurons could be regarded as duration-tuned units. The duration selectivity could be understood by the interaction between the ongoing and the offset process of the neurons.  相似文献   

19.
1. Single-unit recordings were carried out in primary auditory cortex (AI) of barbiturate-anesthetized cats. Neurons, sensitive to sound direction in the horizontal plane (azimuth), were identified by their responses to noise bursts, presented in the free field, that varied in azimuth and sound pressure level (SPL). SPLs typically varied between 0 and 80 dB and were presented at each azimuth that was tested. Each azimuth-sensitive neuron responded well to some SPLs at certain azimuths and did not respond well to any SPL at other azimuths. This report describes AI neurons that were sensitive to the azimuth of monaurally presented noise bursts. 2. Unilateral ear plugging was used to test each azimuth-sensitive neuron's response to monaural stimulation. Ear plugs, produced by injecting a plastic ear mold compound into the concha and ear canal, attenuated sound reaching the tympanic membrane by 25-70 dB. Binaural interactions were inferred by comparing responses obtained under binaural (no plug) and monaural (ear plug) conditions. 3. Of the total sample of 131 azimuth-sensitive cells whose responses to ear plugging were studied, 27 were sensitive to the azimuth of monaurally presented noise bursts. We refer to these as monaural directional (MD) cells, and this report describes their properties. The remainder of the sample consisted of cells that either required binaural stimulation for azimuth sensitivity (63/131), because they were insensitive to azimuth under unilateral ear plug conditions or responded too unreliably to permit detailed conclusions regarding the effect of ear plugging (41/131). 4. Most (25/27) MD cells received either monaural input (MD-E0) or binaural excitatory/inhibitory input (MD-EI), as inferred from ear plugging. Two MD cells showed other characteristics. The contralateral ear was excitatory for 25/27 MD cells. 5. MD-E0 cells (22%, 6/27) were monaural. They were unaffected by unilateral ear plugging, showing that they received excitatory input from one ear, and that stimulation of the other ear was without apparent effect. On the other hand, some monaural cells in AI were insensitive to the azimuth of noise bursts, showing that sensitivity to monaural directional cues is not a property of all monaural cells in AI. 6. MD-EI cells (70%, 19/27) exhibited an increase in responsiveness on the side of the plugged ear, showing that they received excitatory drive from one ear and inhibitory drive from the other. MD-EI cells remained azimuth sensitive with the inhibitory ear plugged, showing that they were sensitive to monaural directional cues at the excitatory ear.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
The development of receptor function at corticothalamic synapses during the first 20 days of postnatal development is described. Whole cell excitatory postsynaptic currents (EPSCs) were evoked in relay neurons of the ventral posterior nucleus (VP) by stimulation of corticothalamic fibers in in vitro slices of mouse brain from postnatal day 1 (P1). During P1-P12, excitatory postsynaptic conductances showed strong voltage dependence at peak current and at 100 ms after the stimulus and were almost completely antagonized by -2-amino-5-phosphonopentoic acid (APV), indicating that N-methyl--aspartate (NMDA) receptor-mediated currents dominate corticothalamic EPSCs at this time. After P12, in 42% of cells, excitatory postsynaptic conductances showed no voltage-dependence at peak current but still showed voltage-dependence 100-ms poststimulus. This voltage-dependent conductance was antagonized by APV. The nonvoltage-dependent component was APV resistant, showed fast decay, and was antagonized by the nonNMDA antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). In the remaining 58% of cells after P12, excitatory postsynaptic conductances showed moderate voltage dependence at peak conductance and strong voltage dependence 100 ms after the stimulus. Analysis of EPSCs before and after APV showed a significant increase in the relative contribution of the non-NMDA conductance after the second postnatal week. From P1 to P16, there was a significant decrease in the time constant of decay of the NMDA EPSC but no change in the voltage dependence of the NMDA response. After P8, slow EPSPs, 1.5-30 s in duration and mediated by metabotropic glutamate receptors (mGluRs), could be evoked by high-frequency stimulation of corticothalamic fibers in the presence of APV and CNQX. Similar slow depolarizations could be evoked by local application of the mGluR agonist (+/-)-1-aminocyclopentane-trans-1,3-dicarboxylic acid (t-ACPD) but from P0. Both conductances were blocked by the mGluR antagonist, (RS)-alpha-methyl-4-carboxyphenylglycine. Hence functional mGluR receptors are present on VP cells from birth, but their synaptic activation at corticothalamic synapses can only be detected after P8. In voltage clamp, the extrapolated reversal potential of the t-ACPD current, with potassium gluconate-based internal solution, was +12 +/- 10 (SE) mV, and the measured reversal potential with cesium gluconate-based internal solution was 1.5 +/- 9.9 mV, suggesting that the mGluR-mediated depolarization was mediated by a nonselective cation current. Replacement of NaCl in the external solution caused the reversal potential of the current to shift to -18 +/- 2 mV, indicating that Na+ is a charge carrier in the current. The current amplitude was not reduced by application of Cs+, Ba2+, and Cd2+, indicating that the t-ACPD current was distinct from the hyperpolarization-activated cation current (IH) and distinct from certain other previously characterized mGluR-activated, nonselective cation conductances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号