首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A kinetic and thermodynamic study of selected calcite marble samples from Lesser Himalayas has been performed using thermogravimetric and differential thermal analyses at heating rates of \(10\,^{\circ }\mathrm{C}\,{\cdot }\min ^{-1}\) and \(30\,^{\circ }\mathrm{C}\,{\cdot }\min ^{-1}\) . The minero-petrography of calcite grains, phase analysis, chemical analysis, and minor impurities determination were carried out using thin-section polarized light microscopy, X-ray diffraction, X-ray fluorescence, and electron microprobe analysis, respectively. The calcite content of the investigated marble samples varied from 97.50 mass% to 98.70 mass%. The activation energy, \(E_\mathrm{a}\) , for the decomposition process increased from \(158.6\,\mathrm{kJ}\,{\cdot }\mathrm{mol}^{-1}\) to \(179.4\,\mathrm{kJ}\,{\cdot }\,\mathrm{mol}^{-1}\) and from \(214.1\,\mathrm{kJ}\,{\cdot }\, \mathrm{mol}^{-1}\) to \(232.8\,\mathrm{kJ}\,{\cdot }\, \mathrm{mol}^{-1}\) for heating rates of \(10\,^{\circ }\mathrm{C}\,{\cdot }\, \min ^{-1}\) and \(30\,^{\circ }\mathrm{C}\,{\cdot }\, \min ^{-1}\) , respectively, with decreasing calcite content. The activation energy values obtained in the present study were in good agreement with previous studies.  相似文献   

2.
Temperature coefficients of the refractive index ( \(\mathrm{d}n/\mathrm{d}T\) ) in the \(25\,^{\circ }\mathrm{C}\) to \(35\,^{\circ }\mathrm{C}\) temperature interval for hydrocarbon mixtures containing as many as 14 compounds were investigated in this work. The measured \(-\mathrm{d}n/\mathrm{d}T\) of the mixtures were compared with calculations based on the values for each compound and their concentrations. Differences of about 1 % between measured and calculated values were observed for all mixtures. The additivity of \(-\mathrm{d}n/\mathrm{d}T\) for these hydrocarbons enables preparation of surrogate fuels that are formulated to have properties like those of specific diesel fuels.  相似文献   

3.
Inhomogeneities are known to develop within thermoelements exposed to elevated temperatures, resulting in temperature measurement errors. While the Seebeck coefficient drift in base-metal thermocouples due to aging at temperatures over \(200\,^{\circ }\mathrm{C}\) has been extensively investigated, there have been very few investigations into possible Seebeck changes at lower temperatures. Despite warnings about possible effects, most practitioners assume changes in homogeneity are either not significant or not able to develop at temperatures less than \(200\,^{\circ }\mathrm{C}\) . This study reports on measurements of inhomogeneities in base-metal thermocouples arising from heat treatment at temperatures in the region of \(200\,^{\circ }\mathrm{C}\) . Thermoelectric scans of thermocouples were carried out following exposure of a range of mineral-insulated metal-sheathed base-metal thermocouples, from two large manufacturers, of Types E, J, K, N, and T, to either a linear-gradient furnace within the range of \(100\,^{\circ }\mathrm{C}\) to \(320\,^{\circ }\mathrm{C}\) or uniform temperature zones of \(100\,^{\circ }\mathrm{C}\) , \(150\,^{\circ }\mathrm{C}\) , and \(200\,^{\circ }\mathrm{C}\) . The experiments reveal noticeable drift in all base-metal types for temperatures as low as \(100\,^{\circ }\mathrm{C}\) and exposure times as short as 1 h. The most sensitive thermoelement alloys appear to be Constantan, Alumel, and Nicrosil. It is concluded that the common working assumption that base-metal thermocouples suffer no thermally induced changes in the Seebeck coefficient below \(200\,^{\circ }\mathrm{C}\) is false. This observation has significant implications for many high-stability monitoring and control systems reliant on base-metal thermocouples that operate in the range of \(100\,^{\circ }\mathrm{C}\) to \(200\,^{\circ }\mathrm{C}\) . Additionally, thermoelectric scanning of base-metal thermocouples should be carried out at temperatures well below \(150\,^{\circ }\mathrm{C}\) to avoid erasure of strain effects or imprinting of new thermal signatures.  相似文献   

4.
The metallic honeycomb core structure has important engineering applications in the aerospace and aviation fields due to several advantages, such as being lightweight, its strong resistance to deformation in high-temperature environments, and its excellent energy absorption characteristics. In the present study, a transient heating experimental system for high-speed flight vehicles was developed to study the thermal insulation characteristics of a superalloy honeycomb core structure at different thermal shock rates \((5\,^{\circ }\mathrm{C}{\cdot }\mathrm{s}^{-1}\, \mathrm{to}\,30\,^{\circ }\mathrm{C}{\cdot }\mathrm{s}^{-1})\) . The highest instantaneous temperature tested was \(950\,^{\circ }\mathrm{C}\) . The three-dimensional finite element method was used to numerically calculate the thermal insulation characteristics of the metallic honeycomb core structure in a high-speed thermal shock environment. The calculated results agree well with the experimental results; this agreement demonstrates that to an extent, numerical calculations are a better alternative than expensive experiments. The results of this study provide an important reference for the thermal protection design of metallic honeycomb core structures of high-speed flight vehicles.  相似文献   

5.
In the framework of the European Metrology Research Programme ENG08 “MetroFission” project, two National Measurement Institutes, LNE-Cnam (France) and NPL (UK), have cooperatively developed methods of in situ validation of thermocouple output for application in next-generation nuclear fission power plants. Miniature fixed-point cells for use at three temperatures were constructed in the first step of this project: at the freezing point of silver ( \(961.78\,^{\circ }\mathrm{C}\) ), the freezing point of copper ( \(1084.62\,^{\circ }\mathrm{C}\) ), and the melting point of the iron–carbon eutectic ( \(1154\,^{\circ }\mathrm{C}\) ). This paper reports the results of a second step in the study, where the robustness of the self-validation method has been investigated. Typical industrial Type N thermocouples have been employed with each of the miniature fixed-point devices installed, and repeatedly thermally cycled through the melting and freezing transitions of the fixed-point ingots. The devices have been exposed to a total of up to 90 h in the molten state. Furthermore, the LNE-Cnam devices were also subjected to fast cool-down rates, on five occasions, where the rate is estimated to have been between \(150\,^{\circ }\mathrm{C}\,{\cdot }\min ^{-1}\) and \(200\,^{\circ }\mathrm{C}\,{\cdot } \min ^{-1}\) . The devices are shown to be repeatable, reliable, and robust over the course of these tests. The drift of the Type N thermocouple has been identified separately to the behavior of the device. A reliable method for improving thermocouple performance and process control is therefore demonstrated. Requirements for implementation and the advantages of each approach for monitoring and correcting thermocouple drift are discussed, and an uncertainty budget for self-validation is presented.  相似文献   

6.
A new relative-humidity setup was developed for calibrating sensors in the temperature range from \(-40\,^{\circ }\mathrm{C}\) up to \(180\,^{\circ }\mathrm{C}\) and at pressures down to 700 hPa and up to 0.5 MPa. The setup is based on the chamber-in-chamber model: a small additional chamber is positioned inside a climatic chamber. While the climatic chamber is used to generate the air temperature, a pre-conditioned gas from outside the climatic chamber delivers the required humidity in the new pressure chamber. Validation of the setup at atmospheric pressure showed relative-humidity uncertainties of 0.2 %rh at 5 %rh over the whole temperature range and 0.4 %rh at 95 %rh for temperatures above \(0\,^{\circ }\mathrm{C}\) . Below \(0\,^{\circ }\mathrm{C}\) , the maximum uncertainty increases to 0.9 %rh due to the influence of the temperature homogeneity. The temperature uncertainty of the new setup is between \(0.10\,^{\circ }\mathrm{C}\) and \(0.21\,^{\circ }\mathrm{C}\) . Five commercially available relative-humidity sensors, of different type and manufacturer and all suitable for high temperatures, were calibrated in the new setup. The measurements showed deviations outside the stated specifications of the manufacturer and the need of traceable calibration facilities.  相似文献   

7.
In this study, the nanocrystalline nickel–cobalt ferrites $(\mathrm{Ni}_{1/2}\mathrm{Co}_{1/2}\mathrm{Fe}_{2}\mathrm{O}_{4})$ were prepared via the citrate route method at $27\,^{\circ }\mathrm{C}$ . The samples were calcined at $300\,^{\circ }\mathrm{C}$ for 3 h. The crystalline structure and the single-phase formations were confirmed by X-ray diffraction (XRD) measurements. Prepared materials showed the cubic spinel structure with m3m symmetry and Fd3m space group. The analyses of XRD patterns were carried out using POWD software. It gave an estimation of lattice constant “ $a$ ” of 8.3584 Å, which was in good agreement with the results reported in JCPDS file no. 742081. The crystal size of the prepared materials calculated by Scherer’s formula was 27.6 nm and the electrical conductivity was around $10^{-5}~\mathrm{S}\,\cdot \, \mathrm{m}^{-1}$ . The permeability component variations with frequency were realized. The magnetic properties of the prepared materials were analyzed by a vibrating sample magnetometer (VSM). It showed a saturation magnetization of $27.26\,\mathrm{emu} \cdot \mathrm{m}^{-1}$ and the behavior of a hard magnet.  相似文献   

8.
The densities of solid and liquid Cu \(_{48}\) Zr \(_{52}\) and the viscosity of the liquid were measured in a containerless electrostatic levitation system using optical techniques. The measured density of the liquid at the liquidus temperature (1223 K) is (7.02 \(\pm \) 0.01) g \(\cdot \) cm \(^{-3}\) and the density of the solid extrapolated to that temperature is (7.15 \(\pm \) 0.01) g \(\cdot \) cm \(^{-3}\) . The thermal expansion coefficients measured at 1223 K are (6.4 \(\pm \) 0.1) \(\,\times \,10^{-5}\) K \(^{-1}\) in the liquid phase and (3.5 \(\pm \) 0.3) \(\,\times \,10^{-5}\) K \(^{-1}\) in the solid phase. The viscosity of the liquid, measured with the oscillating drop technique, is of the form \(A\exp \left[ \left( {{E}_{0}}+{{E}_{1}}\left( 1/T-1/{{T}_{0}} \right) \right) \times \left( 1/T-1/{{T}_{0}} \right) \right] \) , where \({{T}_{0}}=1223\) K, \(A= (0.0254 \pm 0.0004)\) Pa \(\cdot \) s, \({{E}_{0}}\) =  (8.43 \(\pm \) 0.26) \(\,\times \,10^3\) K and \({{E}_{1}}\) =  (1.7 \(\pm \) 0.2) \(\,\times 10^7\) K \(^{2}\) .  相似文献   

9.
It can be noted that the germanate glass–ceramic is a functional material with excellent thermal stability which can be used in optical devices. The temperature-dependent effective thermal conductivities of CaO–BaO–CoO–Al \(_{2}\) O \(_{3}\) –SiO \(_{2}\) –GeO \(_{2}\) glass–ceramics from 295.5 K to 780 K are determined using a \(3\omega \) method. One of the main advantages for the \(3\omega \) method is to diminish radiation errors effectively when the temperature is as high as 1000 K. Thermal conductivities of CaO–BaO–CoO–Al \(_{2}\) O \(_{3}\) –SiO \(_{2}\) –GeO \(_{2}\) increase with a rise in temperature. Effective thermal conductivities of a sample increase from \(1.55~\hbox {W}\cdot \hbox {m}^{-1}\cdot \hbox {K}^{-1}\) at 295.5 K to \(7.64~\hbox {W}\cdot \,\hbox {m}^{-1}\cdot \hbox {K}^{-1}\) at 698.1 K. The effective thermal conductivity of CaO–BaO–CoO–Al \(_{2}\) O \(_{3}\) –SiO \(_{2}\) –GeO \(_{2}\) glass–ceramic increases with a rise of temperature. This investigation can be used as a basis for the measurement of thermal properties of ceramic materials at higher temperature.  相似文献   

10.
11.
Cadmium telluride (CdTe) thin films were prepared on glass substrates by employing the close-spaced sublimation technique. Different source ( $T_\mathrm{sou}$ ) and substrate temperatures ( $T_\mathrm{sub}$ ) were used in order to change the structural properties of layers. The ranges chosen were: $550\,^{\circ }\hbox {C} \le T_\mathrm{sou} \le 650\,^{\circ }\hbox {C}$ and $400\,^{\circ }\hbox {C} \le T_\mathrm{sub} \le 600\,^{\circ }\hbox {C}$ . The environment in the growing chamber was also changed with the purpose to study its influence on the crystalline properties of the surface and volume of the material. Three different surroundings were used: vacuum, high-purity argon, and high-purity oxygen. The surface recombination velocity (SRV) was calculated from photoacoustic (PA) measurements by employing the open PA cell configuration. The behavior of the experimental results was analyzed as a function of the structural characteristics of the films: texture and grain size. Scanning electron microscopy, optical absorption, X-ray diffraction, and dark resistivity measurements were also employed to analyze the properties of the CdTe films. The minimum value for the SRV was found for $T_\mathrm{sou} = 650\,^{\circ }\hbox {C},\, T_\mathrm{sub} = 600\,^{\circ }\hbox {C}$ in an oxygen ambient.  相似文献   

12.
We present thermogravimetric and differential scanning calorimetric studies of PtO \(_2\) powders measured in different atmospheres. In synthetic air a mass loss of 11.4 % is found at the decomposition temperature \(T_\mathrm {D}\)  = 595  \(^{\circ }\hbox {C}\) which can be attributed to the reduction of PtO \(_2\) . In a helium atmosphere the mass loss is 12.0 % and is found at 490  \(^{\circ }\hbox {C}\) . Subsequent heating in air leads to another oxidation process above \(T_\mathrm {D}\) and a reduction at 800  \(^{\circ }\hbox {C}\) . The second oxidation and reduction process is strongly suppressed when the powder is heated in He. The remaining mass above \(T_\mathrm {D}\) does not comply with a reduction path PtO \(_2 \rightarrow \) PtO \(\rightarrow \) Pt. Differential scanning calorimetry shows an endothermic reaction at \(T_\mathrm {D}\) in synthetic air as well as in helium which corresponds with the mass loss. These measurements imply that the powder can be assigned to be \(\beta \) -PtO \(_2\) . Furthermore, catalytic activity of the PtO \(_2\) powder is evidenced by mass spectrometry to be present below 460  \(^{\circ }\hbox {C}\) . Finally, the impact of these findings on the stability of platinum resistance thermometers is discussed.  相似文献   

13.
Qualitative and quantitative analysis of molecular interaction prevailing in glycine, l-alanine, l-valine, and aqueous solution of ionic liquid (IL) [1-ethylpyridinium tetrafluoroborate ( \(\mathrm{EPyBF}_{4})\) ] have been investigated by thermophysical properties. The apparent molar volume ( \(\phi _{V}\) ), viscosity \(B\) -coefficient, molal refraction ( \(R_{\mathrm{M}}\) ), and adiabatic compressibility ( \(\phi _{ K} )\) of glycine, l-alanine, and l-valine have been studied in 0.001 mol \({\cdot }\, \mathrm{dm}^{-3}\) , 0.003 mol \({\cdot }\, \mathrm{dm}^{-3}\) , and 0.005 mol  \({\cdot } \,\mathrm{dm}^{-3}\) aqueous 1-ethylpyridinium tetrafluoroborate [ \(\mathrm{EPyBF}_{4}\) ] solutions at 298.15 K from the values of densities \((\rho )\) , viscosities ( \(\eta \) ), refractive index ( \(n_{\mathrm{D}})\) , and speed of sound \((u)\) , respectively. The extent of interaction, i.e., the solute–solvent interaction is expressed in terms of the limiting apparent molar volume ( \(\phi _{V}^0 )\) , viscosity \(B\) -coefficient, and limiting apparent molar adiabatic compressibility ( \(\phi _{K}^0)\) . The limiting apparent molar volumes ( \(\phi _{V}^0 )\) , experimental slopes ( \(S_{V}^*)\) derived from the Masson equation, and viscosity \(A\) - and \(B\) -coefficients using the Jones–Dole equation have been interpreted in terms of ion–ion and ion–solvent interactions, respectively. Molal refractions ( \(R_{\mathrm{M}})\) have been calculated with the help of the Lorentz–Lorenz equation. The role of the solvent (aqueous IL solution) and the contribution of solute–solute and solute–solvent interactions to the solution complexes have also been analyzed through the derived properties.  相似文献   

14.
Let \(q\) be a power of a prime number \(p\) . Let \(n\) be a positive integer. Let \(\mathbb {F}_{q^n}\) denote a finite field with \(q^n\) elements. In this paper, we consider the existence of the some specific elements in the finite field \(\mathbb {F}_{q^n}\) . We get that when \(n\ge 29\) , there are elements \(\xi \in \mathbb {F}_{q^n}\) such that \(\xi +\xi ^{-1}\) is a primitive element of \(\mathbb {F}_{q^n}\) , and \(\mathrm{Tr}(\xi ) = a, \mathrm{Tr}(\xi ^{-1}) = b\) for any pair of prescribed \(a, b \in \mathbb {F}_q^*\) .  相似文献   

15.
Industrial grade platinum resistance thermometers were calibrated in the temperature range from \(200\,^{\circ }\mathrm{C}\) to \(700\,^{\circ }\mathrm{C}\) . Both wire-wound and thin-film sensor-based thermometers were investigated. The purpose of the study was to investigate thermometers which could be used in future coal power plants. The calibrations were performed in a vertical cesium heat-pipe furnace and in a horizontal and vertical sodium heat-pipe furnace. The reference thermometer was a standard platinum resistance thermometer calibrated at fixed points up to the aluminum point. In addition to calibration, various thermal tests including immersion measurements and thermal-cycling tests were performed. The stability of the sensors was determined by monitoring the ice-point resistance. Possible contamination of the sensors was determined by measuring the resistance ratio \(R(30\,^{\circ }\mathrm{C})/R(10\,^{\circ }\mathrm{C})\) several times during the measurement period. The calibration curves were compared with the ICE 60751 standard and International Temperature Scale 1990 (ITS-90) reference functions. Considerable changes were found in all tested thermometers. The wire-wound sensors were more stable than the thin-film sensors.  相似文献   

16.
Speeds of sound of (l-alanine/l-glutamine/glycylglycine $\,+\, 0.512\, {\mathrm{mol}}\cdot {\mathrm{kg}}^{-1}$ + 0.512 mol · kg ? 1 aqueous ${\mathrm{KNO}}_{3}/0.512\, {\mathrm{mol}}\cdot {\mathrm{kg}}^{-1}$ KNO 3 / 0.512 mol · kg ? 1 aqueous ${\mathrm{K}}_{2}{\mathrm{SO}}_{4}$ K 2 SO 4 ) systems have been measured for several molal concentrations of amino acid/peptide at different temperatures: $T$ T = (298.15 to 323.15) K. Using the speed-of-sound and density data, the parameters, partial molar isentropic compressibilities $\phi _{\kappa }^{0}$ ? κ 0 and transfer partial molar isentropic compressibilities $\Delta _{\mathrm{tr}} \phi _{\kappa }^{0}$ Δ tr ? κ 0 , have been computed. The trends of variation of $\phi _{\kappa }^{0}$ ? κ 0 and $\Delta _{\mathrm{tr}} \phi _{\kappa }^{0}$ Δ tr ? κ 0 with changes in molal concentration of the solute and temperature have been discussed in terms of zwitterion–ion, zwitterion–water dipole, ion–water dipole, and ion–ion interactions operative in the systems.  相似文献   

17.
In this paper, the validation of the water dew-point generator with methane as a carrier gas in the temperature range from \(-41\,^{\circ }\hbox {C}\) to \(+15\,^{\circ }\hbox {C}\) and at pressures up to 6 MPa is reported. During the validation, the generator was used with both nitrogen and methane to investigate the effect of methane on the generator and the chilled mirror dew-point meters. The effect of changing the flow rate and the dew-point temperature of the gas entering the generator, on the gas exiting the generator was investigated. As expected, methane at high pressures created hydrates in combination with water and low temperatures, thus limiting the temperature range of the generator to \(+8\,^{\circ }\hbox {C}\) to \(+15\,^{\circ }\hbox {C}\) at its maximum operating pressure of 6 MPa. A lower operating pressure extended the temperature range; for example, at 3 MPa, the temperature range was already extended down to \(-15\,^{\circ }\hbox {C}\) , and at 1 MPa, the range was extended down to \(-41\,^{\circ }\hbox {C}\) . The validation showed that, in its operating range, the generator can achieve with methane the same standard uncertainty of \(0.02\,^{\circ }\hbox {C}\) frost/dew point already demonstrated for nitrogen and air carrier gases.  相似文献   

18.
A bilateral comparison between the Centro Español de Metrología (CEM) and the ?eský Metrologický Institut (CMI) of radiance temperature scale realizations in the range from \(232\,^{\circ }\mathrm{C}\) to \(1085\, ^{\circ }\mathrm{C}\) was carried out during 2012 to support the calibration measurements capabilities of CMI in radiation thermometry. The CEM capabilities were demonstrated previously in a recent comparison of European laboratories over the range from \(156\,^{\circ }\mathrm{C}\) to \(1000\,^{\circ }\mathrm{C}\) . A CMI KE-LP5 radiation thermometer, working at 1568 nm, was used as a traveling standard. CEM measurements were done at the fixed-points (FPs) of Zn, Ag, and Cu and, for the rest of the temperatures, variable temperature blackbodies (VTBBs) were used. CMI measurements were done at the FPs of Sn, Al, and Cu, and the rest of the temperatures were measured with VTBBs. The size-of-source effect was measured at CEM to decide whether or not the measurements from both laboratories should be corrected by this effect (when the diameter of the sources was different at each laboratory). CMI performed the measurement of the Al FP before and after CEM to evaluate the stability of the radiation thermometer. The results for both laboratories are summarized, and they agree within their expanded uncertainties.  相似文献   

19.
An ozone (O \(_{3})\) oxidation process was introduced for Nb/Al-based superconducting tunnel junctions (STJs) in order to form defect-free tunnel barriers at high critical current and to improve the energy resolution ( \(\Delta E\) ) for X-rays. The dependence of critical current ( \(J_\mathrm{C})\) and leak current ( \(I_\mathrm{leak})\) on the O \(_{3}\) exposure was measured to optimize the oxidation condition. The 50-square- \(\upmu \) m STJs produced by the O \(_{3}\) oxidation process exhibited an extremely small \(I_\mathrm{leak}\) of less than 50 pA. As expected, the lower or shorter the O \(_{3}\) exposure, the higher \(J_\mathrm{C}\) and the smaller the normal resistance ( \(R_\mathrm{N})\) . However, the maximum \(J_\mathrm{C}\) was 8 A/cm \(^{2}\) at an O \(_{3}\) exposure of 0.72 Pa min, which is much smaller than those of STJs with the conventional O \(_{2}\) oxidation process. It is expected that the high \(J_\mathrm{C}\) of 1,000 A/cm \(^{2}\) , at which a 9-eV-energy resolution for 277 eV photons is predicted, can be reached by an O \(_{3}\) exposure of 3.5 \(\times \) 10 \(^{-4}\) Pa min.  相似文献   

20.
A calculation model of the Gibbs energy of ternary oxide compounds from the binary components was used. Thermodynamic properties of \(\mathrm{Yb}_{2} \mathrm{O}_{3}\) \(\mathrm{Bi}_{2}\mathrm{O}_{3}\) \(\mathrm{B}_{2}\mathrm{O}_{3}\) ternary systems in the condensed state were calculated. Thermodynamic data of binary and ternary compounds were used to determine the stable sections. The probability of reactions between the corresponding components in the \(\mathrm{Yb}_{2} \mathrm{O}_{3}\) \(\mathrm{Bi}_{2} \mathrm{O}_{3}\) \(\mathrm{B}_{2} \mathrm{O}_{3}\) system was estimated. Fusibility diagrams of systems \(\mathrm{BiBO}_{3}\) \(\mathrm{YbBO}_{3}\) and \(\mathrm{Bi}_{4} \mathrm{B}_{2} \mathrm{O}_{9}\) \(\mathrm{YbBO}_{3}\) were studied by physical–chemical analysis. The isothermal section of the phase diagram of \(\mathrm{Yb}_{2} \mathrm{O}_{3}\) \(\mathrm{Bi}_{2} \mathrm{O}_{3}\) \(\mathrm{B}_{2} \mathrm{O}_{3}\) at 298 K is built, as well as the projection of the liquid surface of \(\mathrm{BiBO}_{3}\) \(\mathrm{B}_{2} \mathrm{O}_{3}\) \(\mathrm{YbBO}_{3}\) .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号