首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The dielectric ceramics with a main crystal phase of MGTiO3 and additional crystal phase of CaTiO3 were prepared by the conventional electronic ceramics technology .the strucures of MgTiO3 are ilmenitetype,and belong to hexagonal syngony.the ratio of MgTiO3 to Ca TiO3 doping on the dielectric properties of MGTiO3-CaTiO3(MCT)ceranics were inrestigated.the addition of B2O3 decreases the sintering temperatnre and results in rapid desification without obrious negative effect on the Q values of the system(Q=1/tan ).B2O3 exists as liquid phase in the sintering process,promoting the reactions as a singering agent.  相似文献   

2.
Sm3(Fe,Ti)29Nx/α-Fe dual-phase nanometer magnetic material was fabricated through rapid solidification, crystallization and nitridation of Sm-Fe (Ti) alloy. The effect of combination of rapid solidification and Ti alloy addition on the phase formation and microstructure of the Sm-Fe alloy is investigated in this paper. The microstructure of amorphous phase and dual-phase nano-grain crystals before and after crystallization annealing were observed using a high-resolution transmission electron microscope (HREM). The dual-phase nano-grains after annealing were compacted together with a clear interface with the direct exchange-coupling mechanism. Different annealing processes were used to examine the melt-spun alloy. Comparison of the images of SEM showed that annealing at 750℃ for 10 min was most suitable to get homogeneous and nano-grains. No obvious kink was detected in the second quadrant of the hysteresis loop like a single hard magnet, and strong exchange coupling was found between hard magnets and soft magnets.  相似文献   

3.
In this paper, the effects of Si and Ce on the microstructure and hydrogen storage property of Ti26.5Cr20V45Fe8.5Ce0.5 alloy were studied, respectively. First of all, effects of Si on the microstructure and hydrogen storage properties of Ti26.5Cr20(V45Fe8.5)1−x Si x Ce0.5 (x = 0, 0.5, 1.0, 1.5 and 2.0 at%) alloys were studied by X-ray diffraction, scanning electron microscopy and P-C isotherm measurements. As the Si addition increases, the hydrogen absorption capacities of alloys decrease but the equilibrium pressure increases, due to the formation of Laves phase. Secondly, the effect of Ce on Ti26.5Cr20 (V45Fe8.5)0.98Si2 alloy was studied. It was found that Ce addition is an effective way to eliminate the effect of Si on the hydrogen storage properties of the alloy. Supported by the National Hi-Tech Research and Development Program of China (“863” Project) (Grant No. 2006AA05Z144)  相似文献   

4.
The homogeneous glass sample for the ( 1 - x ) As2S3-xCdBr2, where x=0. 015,0. 035,0.05, was prepared by the conventional melt-quenched method. Amorphoas ( 1 - x ) As2S3-xCdBr2 alloys were determined by X-ray diffraction, thermal compreheasive analysis and Raman scattering. The glass transittion temperature (TR) deereases a bit with the addition of CdBr2 . Based on the experimental data, the microstrtucture is considered to be the discrete molecule species of AsBr3 and Cd - S atomic bonds or clusters are honigeneously dispersed in a disordered polymer network formed by AsS3 pyramids interlinked by sulfur bridges.  相似文献   

5.
BaTi4O9-doped Ba0.6Sr0.4TiO3 (BST) composite ceramics were prepared by the conventional solid-state reaction and their structure, dielectric nonlinear characteristics and microwave dielectric properties were investigated. The secondary phase of the orthorhombic structure Ba4Ti13O30 is formed among BST composite ceramics with the increase of BaTi4O9. At the same time, a duplex or bimodal grains size distribution shows fine grains in a coarse grain matrix. The degree of frequency dispersion of dielectric permittivity below T m is increased initially and then decreased with respect to BaTi4O9. As the BaTi4O9 content increases, the tunability of composite ceramics decreases, while the Q value increases. Interestingly, 70 wt% BaTi4O9-doped BST has a tunability ∼4.0% (under 30 kV/cm biasing) versus a permittivity ∼68 and quality factor ∼134.1 (at ∼3.2 GHz). Supported by the Ministry of Science and Technology of China through 973-project (Grant No. 2009CB623302), the Cultivation Fund of the Key Scientific and Technical Innovation Project, Ministry of Education of China (Grant No.707024), Shanghai Committee of Science and Technology (Grant No. 07DZ22302), and Shanghai Foundation Project under 06JC14070  相似文献   

6.
The phase structure and electrical properties of pure and La2O3-doped Bi-InO3-PbTiO3 (BI-PT) ceramics were studied respectively. In (1 -x)BI-xPT (x=0.72-0.80) ceramics, the stability of tetragonal phase increased with increasing x, and pure perovskite structure was obtained for x=-0.80 ceramics. The phase transition temperature range was between 575 ℃ and 600 ℃ for x=0.72-0.80 ceramics, higher than that of PT (-490 ℃). The c/a ratio almost linearly decreased with increasing La2O3 content in x-0.80 ceramics. It is believed that Pb^2+ vacancies were formed by La^3+ substituting Pb^2+ in La2O3-doped BI-PT ceramics. Tc shifted to lower temperature by 30 ℃/mol% La2O3. The maximum dielectric constant 8557 around 559 ℃ was exhibited in 0.5mol%-doped BI-0.80PT ceramics. La2O3-doped ceramics could be poled resulting from decreasing of c/a ratio and improving of dielectric loss and resistivity. The maximum piezoelectric coefficient d33 was 12 pC/N for 2mol%-doped BI-0.80PT ceramics.  相似文献   

7.
The microwave dielectric properties and microstructure of BaTi4.3ZnyO9.6+y +0.02 mol% SnO2+0.01 mol% MnCO3+x mol% Nb2O5(x=0-0.05, y=0-0.08) system ceramics were studied as a function of the amount of ZnO and Nb2O5 doped. Addition of (y=0-0.05) ZnO and (x=0-0.025) Nb2O5 enhanced the reactivity and decreased the sintering temperature effectively. It also increased the dielectric constant ε r and quality factor Q(=1/tan 8) of the system due to the substitution of Ti^4+ ions with incorporating Zn^2+and Nb^5+ ions, which was analyzed by the reaction ZnO+Nb2O5+ 3 TiTxTi →ZnTi+ 2NbTi+3TiO2. When the system doped with (y=0.05) ZnO and (x=0.025) Nb205 were sintered at 1 160 ℃ for 6 h, the εr. Qf0 value and rfwere 36.5, 42 000 GHz, and+1.8 ppm/℃, respectively, at 5 GHz.  相似文献   

8.
(PEO) x −(V0.85Mo0.15)2O5(x=0,0.5,1.0) nanocomposite films were prepared by a modified sol-gel method. The structure of the films was analyzed by XRD, and the DC electrical conductivity. Cyclic voltammogram and optical spectral transmittance were investigated. The results show that the (V0.85Mo0.15)2O5 xerogel has a layered structure and its interlayer space increased from 1.3181 nm at x=0 to 1.7897 nm at x=1.0. The introduction of MoO3 improved the DC electrical conductivities of the films due to the generation of V4+ to maintain the electrical neutrality of the oxides. PEO intercalated in the interlayer of (V0.85Mo0.15)2O5 oxides has interaction with the oxides, enhancing the amount of Li+ ions inserted into the interlayer of the oxides. Moreover, the intercalation of PEO into the interlayer of (V0.85Mo0.15)2O5 oxides improved the cathodic electrochromic property in near ultraviolet region and anodic electrochromic property in visible range. JIANG Cong-sheng: Born in 1963 Supported by the Science Foundation of Hubei Province (Grant No. 2001ABB083)  相似文献   

9.
Highly ordered Bi4Si3O12 micro-crystals were prepared at normal atmosphere. Phase identification of the prepared crystals was accomplished by X-ray diffractometer (XRD). Domain structure and defects were characterized by environmental scanning electron microscopy (ESEM). XRD shows that the obtained micro-crystals are of eulytite structure with chemical formulation of Bi4Si3O12. A highly ordered growth pattern is confirmed due to the faster growth of the {124} faces than that of the {204} faces by ESEM. The growing process of the domain structure is of pollen parent and filial generation pattern. The filial generations of Bi4Si3O12 crystals are generated from the pollen parent. Cracks generate from the defect areas and propagate along the {124} faces due to their lower binding energy under a proper temperature gradient, contributing to the total transcrystalline fracture. It is confirmed that the generation and development of the voids in the crystal grains can be developed when unmatched dimensions of the two opposite faces are formed. And the development of the voids is dependent on the dimensions and orientations of the two opposite faces. Supported by the Innovation Research Team Funds of Shaanxi University of Science & Technology (Grant No. SUST-A04)  相似文献   

10.
Cr-doped Li3V2(PO4)3 cathode materials Li3V2−x Cr x (PO4)3 were prepared by a carbothermal reduction(CTR) process. The properties of the Cr-doped Li3V2(PO4)3 were investigated by X-ray diffraction (XRD), scanning electron microscopic (SEM), and electrochemical measurements. Results show that the Cr-doped Li3V2(PO4)3 has the same monoclinic structure as the undoped Li3V2(PO4)3, and the particle size of Cr-doped Li3V2(PO4)3 is smaller than that of the undoped Li3V2(PO4)3 and the smallest particle size is only about 1 μm. The Cr-doped Li3V2(PO4)3 samples were investigated on the Li extraction/insertion performances through charge/discharge, cyclic voltammogram (CV), and electrochemical impedance spectra(EIS). The optimal doping content of Cr was that x=0.04 in the Li3V2−x Cr x (PO4)3 samples to achieve high discharge capacity and good cyclic stability. The electrode reaction reversibility was enhanced, and the charge transfer resistance was decreased through the Cr-doping. The improved electrochemical performances of the Cr-doped Li3V2(PO4)3 cathode materials are attributed to the addition of Cr3+ ion by stabilizing the monoclinic structure. Funded by the Guangxi Natural Science Foundation(No. 0832259) and the National Basic Research Program of China (No. 2007CB613607)  相似文献   

11.
By using the phase field model for the solidification of multi-component alloys and coupling with real thermodynamic data, the dendritic morphology transition and the dendritic micro-segregation of Ni-Al-Nb ternary alloys are simulated in two cases, i.e., varying the alloy composition at a fixed under-cooling and varying the undercooling at a fixed alloy composition. The simulated results indicate that with the increase of the dimensionless undercooling U (U=ΔT/ΔT0, where ΔT is the undercooling and ΔT0 the temperature interval between the solidus and liquidus), the dendritic morphology transfers from dendritic to globular growth in both cases. As to the dendritic micro-segregation, both cases present a regularity of increasing at first and then decreasing.  相似文献   

12.
The environmental problem caused by refrigerant has become the focus all over the world. As the most typical natural refrigerant, CO2, of course, becomes the research focus. This paper introduces the development and application status of CO2 refrigeration and heat pump technology. The researches on CO2 refrigeration and heat pump, carried out by Thermal Energy Research Institute, Tianjin University, also are presented in this paper. Supported by the National Natural Science Foundation of China (Grant Nos. 50676064, 50506019) and the National Hi-Tech Research and Development Program of China (“863” Project) (Grant No. 2007AA05Z262)  相似文献   

13.
The high-dense nanocrystalline BaTiO3 (BT) ceramics with grain size smaller than 100 nm have been successfully prepared by the two step sintering and the spark plasma sintering (SPS) process. The successive transitions in nanograin BT ceramics from rhombohedral to orthorhombic, tetragonal and cubic transitions, similar to those in coarse BT ceramics, were revealed by in-situ temperature dependent Raman spectrum. The multiphase coexistence and the diffused phase transition character were demonstrated in the 8 nm nanocrystalline BT ceramics. Supported by the National Basic Research Program of China (“973” Project) (Grant No. 2002CB613301) and the National Natural Science Foundation of China (Grant No. 50872093)  相似文献   

14.
The phonon spectrum of ordered zincblende Si50Ge50 alloy is calculated by ab initio method. The energy band structure at zero pressure and the pressure dependence of phonon dispersion curves are shown up to 20 GPa. The calculation finds a pressure-induced softening of the transverse acoustic phonon mode and the mode frequency reaching zero at about 14 GPa, which indicate breaking of the symmetry and formation of a new phase under high pressure. Supported by the National Natural Science Foundation of China (Grant No. 50771090), the State Key Program for Basic Research of China (Grant No. 2005CB724404) and the Program for Changjiang Scholars and Innovative Team (Grant No. IRT0650)  相似文献   

15.
CeO2-TiO2 films and CeO2-TiO/SnO2:Sb (6 mol%) double films were deposited on glass substrates by radio-frequency magnetron sputtering (R.F. Sputtering), using SnO2:Sb(6 mol%) target, and CeO2- TiO2 targets with different molar ratio of CeO2 to TiO2 (CeO2:TiO2-0:1.0; 0.1:0.9; 0.2:0.8; 0.3:0.7; 0.4:0.6; 0.5:0.5; 0.6:0.4; 0.7:0.3; 0.8:0.2; 0.9:0.1; 1.0:0). The films are characterized by UV-visible transmission and infrared reflection spectra, scanning electron microscopy (SEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), respectively. The obtained results show that the amorphous phases composed of CeO2-TiO2 play an important role in absorbing UV, there are Ce^3-, Ce^4- and Ti^4- on the surface of the films; the glass substrates coated with CeO2-TiO2 (Ce/Ti=0.5:0.5; 0.6:0.4)/SnO2:Sb(6 mol%) double films show high absorbing UV(〉99), high visible light transmission (75%) and good infrared reflection (〉70%). The sheet resistance of the films is 30-50 Ω/□. The glass substrates coated with the double functional films can be used as window glass of buildings, automobile and so on.  相似文献   

16.
Al2 O3/Al composite was fabricated by the reaction between SiO2 and molten aluminum. The microstructures of the composite obtained under different reaction conditions were analyzed. The formation mechanism of the composite microstructure was discussed. Results show that the reaction kinetics is influenced remarkably by the reaction temperature, reaction time and the quantity of SiO2. The morphologies of Al2O3 have different features, depending on the reaction temperature. The composite has equaxed Al2O3 grains when materials reacted below 1200°C, and the composite is composed of a large number of fine Al2O3 grains and aluninum. The composite has a frame-shaped Al2O3 microstructure at the reaction temperature of above 1250°C. CHENG Xiao-min: Born in 1964 Funded by the National Natural Science Foundation of China (No. 91522)  相似文献   

17.
Novel straight silicon oxide [SiO x (1<x<2)] nanorod Y junctions have been synthesized on Si plate by thermal evaporation of mixed powders of silica and carbon nanofibers at 1300°C and condensation on a Si substrate without assistance of any catalyst. The synthesized samples were characterized by means of scanning electron microscopy, transmission electron microscopy, high resolution transmission electron microscopy, and energy dispersive X-ray spectroscopy. The results suggested that the straight nanorod Y junctions are amorphous and consist only of elements Si and O, and these rods with diameters about 50–200 nm have a neat smooth surface. The growth of such silicon oxide nanorods may be a result of the second nucleation on the surface of rods causing a change in the growth direction of silicon oxide nanorods developed. Supported by the Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing, and the Program of Science & Technology Activity for Chinese Homecoming Fellow Abroad and Research Program of Beijing Key Laboratory for Sensor (Grant No. KM200810772009)  相似文献   

18.
We have investigated the preparation and properties of Bi3.4Ce0.6Ti3O12 thin films. The Bi3.4Ce0.6Ti3O12 thin films were fabricated on the Pt/Ti/SiO2/Si substrates using sol-gel method. The structure and morphology of the films were characterized using X-ray diffraction and atomic force microscopy. The thin films showed a perovskite phase and dense microstructure. The dielectric constant and the dissipation factor of the Bi3.4Ce0.6Ti3O12 thin films were about 172 and 0.031 at 1 kHz, respectively. The 2P r and 2E c of the Bi3.4Ce0.6Ti3O12 thin films were 67.1 μC/cm2 and 299.7 kV/cm, respectively, under an applied field of 600 kV/cm. The Bi3.4Ce0.6Ti3O12 film did not show fatigue up to 4.46×109 switching cycles at a frequency of 1 MHz, and showed good insulating behavior according to the test of leakage current. Supported by the Natural Science Foundation of Hubei Province (Grants No. 2004ABA082)  相似文献   

19.
Cu2ZnSnS4 (CZTS) thin films were successfully fabricated on glass substrates by sulfurizing Cu-Sn-Zn multilayer precursors, which were deposited by ion beam sputtering and RF magnetron sputtering, respectively. The structural, electrical and optical properties of the prepared films under various processing conditions were investigated in detail. Results showed that the as-deposited CZTS thin films with the precursors by both ion beam sputtering and RF magnetron sputtering have a composition near stoichiometric. The crystallization of the samples, however, has a strong dependence on the atomic percent of constituents of the prepared CZTS films. A single phase stannite-type structure CZTS with a large absorption coefficient of 104/cm in the visible range could be obtained after sulfurization at 520°C for 2 h. The samples relative to the RF magnetron sputtering showed a low resistivity of 0.073 Ωcm and band gap energy of about 1.53 eV. The samples relative to the ion beam sputtering exhibited a resistivity of 0.36 Ωcm and the band gap energy is about 1.51 eV. Supported by the National Natural Science Foundation of China (Grant No. 10574106), the Planned Science and Technology Project of Guangdong Province (Grant No.2003C05005) and the Natural Science Fund of Zhanjiang Normal University (Grant No.200801)  相似文献   

20.
TiB2-Al2O3 composite powders were produced by self-propagating high-temperature synthesis(SHS) method with reductive process from B2O3-TiO2-AI system. X-ray diffraction(XRD) and scanning electron microscopy(SEM) analyses show the presence of TiB2 and Al2O3 only in the composite powders produced by SHS. The powders are uniform and free-agglomerate. Transmission electron microscopy (TEM) and high resolution electron microscopy (HREM) observation of microstructure of the composite powders indicate that the interfaces of the TiB2-Al2O3 bond well, without any interfacial reaction products. It is proposed that the good interfacial bonding of the composite powders can be resulted from the TiB2 particles crystallizing and growing on the Al2O3 particles surface with surface defects acting as nucleation centers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号