首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
miR-155 plays a crucial role in proinflammatory activation. This study was carried out to assess the association of abnormal expression of miR-155 in peripheral blood of patients with Rheumatoid arthritis with the expression of TNF-α and IL-1β. Release of TNF-α and IL-1β, and expression of miR-155 were determined in RA peripheral blood or peripheral blood macrophages, followed by correlation analysis of the cytokines release and miR-155 expression. Furthermore, in vitro studies indicate that miR-155 inhibited the expression of SOCS1. Our results suggest that there is a correlation between the high-level expression of miR-155 and the enhanced expression of TNF-α and IL-1β. miR-155 targets and suppresses the expression of SOCS1, and the decrease of SOCS1 may lead to the upregulation of TNF-α and IL-1β.  相似文献   

3.
4.
MicroRNAs play important roles in laryngeal carcinoma and other cancers. However, the expression of microRNAs in paracancerous tissue has been studied less. Here, using laser capture microdissection (LCM), we detected the expression of microRNAs in paracancerous tissues. Among all down-regulated microRNAs in the center area of tumor tissues, only miR-30b expression was significantly reduced in paracancerous tissues compared to surgical margins. Therefore, to further investigate the effect of miR-30b on laryngeal carcinoma, we stably overexpressed miR-30b in laryngeal carcinoma cell line HEp-2 cells. It was found that although there was no significant difference in cell viability between miR-30b overexpressed cells and control HEp-2 cells, p53 expression was obviously enhanced in miR-30b overexpressed cells. Whether miR-30b could improve the anti-tumor effect of adenovirus-p53 (Ad-p53) in laryngeal carcinoma and other cancer cell lines was also evaluated. It was found that in miR-30b overexpressed HEp-2 cells, p53-mediated tumor cell apoptosis was obviously increased both in vitro and in vivo. MDM2-p53 interaction might be involved in miR-30b-mediated anti-tumor effect. Together, results suggested that miR-30b could modulate p53 pathway and enhance p53 gene therapy-induced apoptosis in laryngeal carcinoma, which could provide a novel microRNA target in tumor therapy.  相似文献   

5.
MicroRNAs (miRNAs) are a class of small, noncoding RNAs that act as key regulators in various physiological and pathological processes. However, the regulatory mechanisms for miRNAs in colorectal cancer remain largely unknown. Here, we found that miR-103 is up-regulated in colorectal cancer and its overexpression is closely associated with tumor proliferation and migration. In addition, repressing the expression of miR-103 apparently inhibits colorectal cancer cell proliferation and migration in vitro and HCT-116 xenograft tumor growth in vivo. Subsequent software analysis and dual-luciferase reporter assay identified two tumor suppressor genes DICER and PTEN as direct targets of miR-103, and up-regulation of DICER and PTEN obtained similar results to that occurred in the silencing of miR-103. In addition, restoration of DICER and PTEN can inhibit miR-103-induced colorectal cancer cell proliferation and migration. Our data collectively demonstrate that miR-103 is an oncogene miRNA that promotes colorectal cancer proliferation and migration through down-regulation of the tumor suppressor genes DICER and PTEN. Thus, miR-103 may represent a new potential diagnostic and therapeutic target for colorectal cancer treatment.  相似文献   

6.
7.
Ossification of the ligamentum flavum (OLF) is a disorder of heterotopic ossification of spinal ligaments and is the main cause of thoracic spinal canal stenosis. Previous studies suggested that miR-132-3p negatively regulates osteoblast differentiation. However, whether miR-132-3p is involved in the process of OLF has not been investigated. In this study, we investigated the effect of miR-132-3p and its target genes forkhead box O1 (FOXO1), growth differentiation factor 5 (GDF5) and SRY-box 6 (SOX6) on the osteogenic differentiation of ligamentum flavum (LF) cells. We demonstrated that miR-132-3p was down-regulated during the osteogenic differentiation of LF cells and negatively regulated the osteoblast differentiation. Further, miR-132-3p targeted FOXO1, GDF5 and SOX6 and down-regulated the protein expression of these genes. Meanwhile, FOXO1, GDF5 and SOX6 were up-regulated after osteogenic differentiation and the down-regulation of endogenous FOXO1, GDF5 or SOX6 suppressed the osteogenic differentiation of LF cells. In addition, we also found FOXO1, GDF5 and SOX6 expression in the ossification front of OLF samples. Overall, these results suggest that miR-132-3p inhibits the osteogenic differentiation of LF cells by targeting FOXO1, GDF5 and SOX6.  相似文献   

8.
9.
10.
This study was carried out to quantitate the expression levels of microRNA-17, -19a, -34a, -155, and -210 (miRs) expressed in nine clear cell renal cell carcinoma (ccRCC) and one chromophobe renal cell carcinoma cell line with and without sarcomatoid differentiation, and in six primary kidney tumors with matching normal kidney tissues. The data in the five non-sarcomatoid ccRCC cell lines—RC2, CAKI-1, 786-0, RCC4, and RCC4/VHL—and in the four ccRCC with sarcomatoid differentiation—RCJ41T1, RCJ41T2, RCJ41M, and UOK-127—indicated that miR-17 and -19a were expressed at lower levels relative to miR-34a, -155, and -210. Compared with RPTEC normal epithelial cells, miR-34a, miR-155, and miR-210 were expressed at higher levels, independent of the sarcomatoid differentiation status and hypoxia-inducible factors 1α and 2α (HIFs) isoform expression. In the one chromophobe renal cell carcinoma cell line, namely, UOK-276 with sarcomatoid differentiation, and expressing tumor suppressor gene TP53, miR-34a, which is a tumor suppressor gene, was expressed at higher levels than miR-210, -155, -17, and -19a. The pilot results generated in six tumor biopsies with matching normal kidney tissues indicated that while the expression of miR-17 and -19a were similar to the normal tissue expression profile, miR-210, -155, -and 34a were expressed at a higher level. To confirm that differences in the expression levels of the five miRs in the six tumor biopsies were statistically significant, the acquisition of a larger sample size is required. Data previously generated in ccRCC cell lines demonstrating that miR-210, miR-155, and HIFs are druggable targets using a defined dose and schedule of selenium-containing molecules support the concept that simultaneous and concurrent downregulation of miR-210, miR-155, and HIFs, which regulate target genes associated with increased tumor angiogenesis and drug resistance, may offer the potential for the development of a novel mechanism-based strategy for the treatment of patients with advanced ccRCC.  相似文献   

11.
MiRNAs are important epigenetic players with tissue- and disease-specific effects. In this study, our aim was to investigate the putative differential expression of miRNAs in adrenal tissues from different forms of Cushing’s syndrome (CS). For this, miRNA-based next-generation sequencing was performed in adrenal tissues taken from patients with ACTH-independent cortisol-producing adrenocortical adenomas (CPA), from patients with ACTH-dependent pituitary Cushing’s disease (CD) after bilateral adrenalectomy, and from control subjects. A confirmatory QPCR was also performed in adrenals from patients with other CS subtypes, such as primary bilateral macronodular hyperplasia and ectopic CS. Sequencing revealed significant differences in the miRNA profiles of CD and CPA. QPCR revealed the upregulated expression of miR-1247-5p in CPA and PBMAH (log2 fold change > 2.5, p < 0.05). MiR-379-5p was found to be upregulated in PBMAH and CD (log2 fold change > 1.8, p < 0.05). Analyses of miR-1247-5p and miR-379-5p expression in the adrenals of mice which had been exposed to short-term ACTH stimulation showed no influence on the adrenal miRNA expression profiles. For miRNA-specific target prediction, RNA-seq data from the adrenals of CPA, PBMAH, and control samples were analyzed with different bioinformatic platforms. The analyses revealed that both miR-1247-5p and miR-379-5p target specific genes in the WNT signaling pathway. In conclusion, this study identified distinct adrenal miRNAs as being associated with CS subtypes.  相似文献   

12.
13.
The role of microRNAs (miRNAs) during keratinocyte (KC) differentiation and in skin diseases with epidermal phenotypes has attracted strong interest over the past few years. However, combined mRNA and miRNA expression analyses to elucidate the intricate mRNA–miRNA networks of KCs at different stages of differentiation have not been performed yet. In the present study, we investigated the dynamics of miRNA and mRNA expression during KC differentiation in vitro and in normal and psoriatic epidermis. While we identified comparable numbers of up- and downregulated mRNAs (49% and 51%, respectively), miRNAs were predominantly upregulated (76% vs 24%) during KC differentiation. Further bioinformatics analyses suggested an important inhibitory role for miR-155 in KC differentiation, as it was repressed during KC differentiation in normal skin but strongly upregulated in the epidermis of psoriatic skin lesions. Mimicking the inflammatory milieu of psoriatic skin in vitro, we could show that the pro-inflammatory cytokines IL17, IL1β and INFγ synergistically upregulated miR-155 expression in KCs. Forced over-expression of miR-155 in human in vitro skin models specifically reduced the expression of loricrin (LOR) in KCs, indicating that miR-155 interferes with the establishment of a normal epidermal barrier. Together, our data indicate that downregulation of miR-155 during KC differentiation is a crucial step for epidermal barrier formation. Furthermore, its strong upregulation in psoriatic lesions suggests a contributing role of miR-155 in the altered keratinocyte differentiation observed in psoriasis. Therefore, miR-155 represents as a potential target for treating psoriatic skin lesions.  相似文献   

14.
The aim of the study was to determine if aberrant expression profile of cardiovascular disease associated microRNAs would be able to predict within 10 to 13 weeks of gestation preterm delivery such as spontaneous preterm birth (PTB) or preterm prelabor rupture of membranes (PPROM) in the absence of other pregnancy-related complications (gestational hypertension, preeclampsia, fetal growth restriction, or small for gestational age). In addition, we assessed if aberrant expression profile of cardiovascular disease associated microRNAs would be able to predict preterm delivery before and after 34 weeks of gestation. The retrospective study was performed within the period November 2012 to March 2020. Whole peripheral blood samples were collected from 6440 Caucasian individuals involving 41 PTB and 65 PPROM singleton pregnancies. A control group, 80 singleton term pregnancies, was selected on the base of equal sample storage time. Gene expression of 29 selected cardiovascular disease associated microRNAs was studied using real-time RT-PCR. Downregulation of miR-16-5p, miR-20b-5p, miR-21-5p, miR-24-3p, miR-26a-5p, miR-92a-3p, miR-126-3p, miR-133a-3p, miR-145-5p, miR-146a-5p, miR-155-5p, miR-210-3p, miR-221-3p and miR-342-3p was observed in pregnancies with preterm delivery before 37 (≤36 + 6/7) weeks of gestation. Majority of downregulated microRNAs (miR-16-5p, miR-24-3p, miR-26a-5p, miR-92a-3p, miR-133a-3p, miR-145-5p, miR-146a-5p, miR-155-5p, miR-210-3p, and miR-342-3p) was associated with preterm delivery occurring before 37 (≤36 + 6/7) weeks of gestation. The only miR-210-3p was downregulated in pregnancies with preterm delivery before 34 (≤33 + 6/7) weeks of gestation. The type of preterm delivery also had impact on microRNA gene expression profile. Downregulation of miR-24-3p, miR-92a-3p, miR-155-5p, and miR-210-3p was a common feature of PTB and PPROM pregnancies. Downregulation of miR-16-5p, miR-20b-5p, miR-26a-5p, miR-126-3p, miR-133a-3p, miR-146a-5p, miR-221-3p, and miR-342-3p appeared just in PTB pregnancies. No microRNA was uniquely dysregulated in PPROM pregnancies. The combination of 12 microRNAs (miR-16-5p, miR-20b-5p, miR-21-5p, miR-24-3p, miR-26a-5p, miR-92a-3p, miR-133a-3p, miR-145-5p, miR-146a-5p, miR-155-5p, miR-210-3p, and miR-342-3p, AUC 0.818, p < 0.001, 74.53% sensitivity, 75.00% specificity, cut off > 0.634) equally as the combination of 6 microRNAs (miR-16-5p, miR-21-5p, miR-24-3p, miR-133a-3p, miR-155-5p, and miR-210-3p, AUC 0.812, p < 0.001, 70.75% sensitivity, 78.75% specificity, cut off > 0.652) can predict preterm delivery before 37 weeks of gestation in early stages of gestation in 52.83% pregnancies at 10.0% FPR. Cardiovascular disease associated microRNAs represent promising biomarkers with very good diagnostical potential to be implemented into the current routine first trimester screening programme to predict preterm delivery.  相似文献   

15.
16.
17.
18.
miR-29a is a conserved miRNA that participates in bone formation and immune response in vertebrates. miR-29a of Pinctada martensii (Pm-miR-29a) was identified in the previous research though deep sequencing. In this report, the precise sequence of mature Pm-miR-29a was validated using miRNA rapid amplification of cDNA ends (miR-RACE) technology. The precursor sequence of Pm-miR-29a was predicted to have 87 bp. Stem loop qRT-PCR analysis showed that Pm-miR-29a was easily detected in all the tissues, although expressions in the mantle and gill were low. The microstructure showed the disrupted growth of the nacre after Pm-miR-29a over-expression, which was induced by mimic injection into P. martensii. Results of the target analysis indicated that neuropeptide Y receptor type 2 (Y2R) was the potential target of Pm-miR-29a. Meanwhile, Pm-miR-29a mimics could obviously inhibit the relative luciferase activity of the reporter containing 3′ UTR (Untranslated Regions) of the Y2R gene. Furthermore, the expression of Y2R was downregulated whereas expressions of interleukin 17 (IL-17) and nuclear factor κB (NF-κB) were upregulated after Pm-miR-29a over-expression in the mantle and gill, thereby suggesting that Pm-miR-29a could activate the immune response of the pearl oyster. Results showed that Pm-miR-29a was involved in nacre formation and immune response by regulating Y2R in pearl oyster P. martensii.  相似文献   

19.
The molecular mechanism responsible for Ewing’s Sarcoma (ES) remains largely unknown. MicroRNAs (miRNAs), a class of small non-coding RNAs able to regulate gene expression, are deregulated in tumors and may serve as a tool for diagnosis and prediction. However, the status of miRNAs in ES has not yet been thoroughly investigated. This study compared global miRNAs expression in paraffin-embedded tumor tissue samples from 20 ES patients, affected by primary untreated tumors, with miRNAs expressed in normal human mesenchymal stromal cells (MSCs) by microarray analysis. A miRTarBase database was used to identify the predicted target genes for differentially expressed miRNAs. The miRNAs microarray analysis revealed distinct patterns of miRNAs expression between ES samples and normal MSCs. 58 of the 954 analyzed miRNAs were significantly differentially expressed in ES samples compared to MSCs. Moreover, the qRT-PCR analysis carried out on three selected miRNAs showed that miR-181b, miR-1915 and miR-1275 were significantly aberrantly regulated, confirming the microarray results. Bio-database analysis identified BCL-2 as a bona fide target gene of the miR-21, miR-181a, miR-181b, miR-29a, miR-29b, miR-497, miR-195, miR-let-7a, miR-34a and miR-1915. Using paraffin-embedded tissues from ES patients, this study has identified several potential target miRNAs and one gene that might be considered a novel critical biomarker for ES pathogenesis.  相似文献   

20.
The complete molecular mechanisms underlying the pathophysiology of Alzheimer’s disease (AD) remain to be elucidated. Recently, microRNA-455-3p has been identified as a circulating biomarker of early AD, with increased expression in post-mortem brain tissue of AD patients. MicroRNA-455-3p also directly targets and down-regulates APP, with the overexpression of miR-455-3p suppressing its toxic effects. Here, we show that miR-455-3p expression decreases with age in the brains of wild-type mice. We generated a miR-455 null mouse utilising CRISPR-Cas9 to explore its function further. Loss of miR-455 resulted in increased weight gain, potentially indicative of metabolic disturbances. Furthermore, performance on the novel object recognition task diminished significantly in miR-455 null mice (p = 0.004), indicating deficits in recognition memory. A slight increase in anxiety was also captured on the open field test. BACE1 and TAU were identified as new direct targets for miR-455-3p, with overexpression of miR-455-3p leading to a reduction in the expression of APP, BACE1 and TAU in neuroblastoma cells. In the hippocampus of miR-455 null mice at 14 months of age, the levels of protein for APP, BACE1 and TAU were all increased. Such findings reinforce the involvement of miR-455 in AD progression and demonstrate its action on cognitive performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号