首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The main objective of this research is to compare different irrigation methods based upon a parametric evaluation system in an area of 29,300 ha in the Abbas plain located in the Elam Province, in the west of Iran. The soil properties of the study area such as texture, depth, electrical conductivity, drainage, calcium carbonate content, and slope were derived from a semidetailed soil study carried out on the Abbas Plain on a scale of 1:20,000. Once the soil properties were analyzed and evaluated, suitability maps were generated for surface, sprinkle, and drip irrigation methods using remote sensing techniques and geographic information system. The obtained results showed that for 16,125 ha (55.03%) of the study area surface irrigation method was highly recommended; whereas for 16,600 ha (56.66%) of the study area a sprinkle irrigation method would provide to be extremely efficient and suitable; moreover, it was found that 15,425 ha (52.65%) of the study area was highly suitable for drip irrigation methods; however, one soil series coded 9 and covering an area of 2,150 ha (7.34%) was incompatible for sprinkle and surface irrigation systems. For drip irrigation systems the unsuitable lands did not exist in this zone. The results demonstrated that by applying sprinkle irrigation instead of surface and drip irrigation methods, the arability of 21,250 ha (72.53%) in the Abbas Plain will improve. In addition by applying drip irrigation instead of surface and sprinkle irrigation methods, the land suitability of 6,275 ha (21.42%) of this plain will improve. The comparison of the different types of irrigation techniques revealed that the sprinkle and drip irrigation methods were more effective and efficient than the surface irrigation methods for improving land productivity. It is of note, however, that the main limiting factor in using either surface and/or sprinkle irrigation methods in this area is soil texture and the main limiting factor in using drip irrigation methods were soil calcium carbonate content and soil texture.  相似文献   

2.
On irrigation schemes with rotational irrigation systems in semiarid tropics, the existing rules for water allocation are based on applying a fixed depth of water with every irrigation irrespective of the crops, their growth stages, and soils on which these crops are grown. However, when water resources are scarce, it is necessary to allocate water optimally to different crops grown in the irrigation scheme taking account of different soils in the command area. Allocating water optimally may lead to applying less water to crops than is needed to obtain the maximum yield. In this paper, a three stage approach is proposed for allocating water from a reservoir optimally based on a deficit irrigation approach, using a simulation-optimization model. The allocation results with a deficit irrigation approach are compared for a single crop (wheat) in an irrigation scheme in India, first with full irrigation (irrigation to fill the root zone to field capacity) and second with the existing rule. The full irrigation with a small irrigation interval was equivalent to adequate irrigation (no stress to the crop). It is found that practicing deficit irrigation enables the irrigated area and the total crop production in the irrigation scheme used for the case study to be increased by about 30–45% and 20–40%, respectively, over the existing rule and by 50 and 45%, respectively, over the adequate irrigation. Allocation of resources also varied with soil types.  相似文献   

3.
This paper presents a genetic algorithm (GA) model for obtaining an optimal operating policy and optimal crop water allocations from an irrigation reservoir. The objective is to maximize the sum of the relative yields from all crops in the irrigated area. The model takes into account reservoir inflow, rainfall on the irrigated area, intraseasonal competition for water among multiple crops, the soil moisture dynamics in each cropped area, the heterogeneous nature of soils, and crop response to the level of irrigation applied. The model is applied to the Malaprabha single-purpose irrigation reservoir in Karnataka State, India. The optimal operating policy obtained using the GA is similar to that obtained by linear programming. This model can be used for optimal utilization of the available water resources of any reservoir system to obtain maximum benefits.  相似文献   

4.
The technology of irrigated agriculture has often been controversial. The development agencies would praise its productivity, as only 18% of the world’s cultivated land is irrigated but produces roughly 33% of the world’s human food supply. Environmental and ecological concerns cite the degradation of natural landscapes, elimination of floodplains and wetlands, and profound impacts on wildlife habitats. Dr. Mark Fiege (University of Washington Press, Seattle, 1999) in his book entitled Irrigated Eden: The Making of an Agricultural Landscape in the American West proposes a possible reconciling view—that irrigation should be viewed as a manmade ecological system, in which land and water are modified to increase agricultural production. The reported research has used this ecological approach to study the Middle Rio Grande irrigated landscape, for the purpose of identifying options for water and ecosystem conservation. This article presents research findings related to opportunities in the agricultural sector to reduce water diversions from the river, primarily by changing the practice of continuous canal water delivery to rotational water delivery. Following the research recommendations since 2002, irrigation water users in the Middle Rio Grande Valley have reduced their diversions by more than 30%, which means more water is now available in the river for better ecology in general and for better fish and wildlife habitat in particular.  相似文献   

5.
This paper presents the area and water allocation model (AWAM), which incorporates deficit irrigation for optimizing the use of water for irrigation. This model was developed for surface irrigation schemes in semiarid regions under rotational water supply. It allocates the land area and water optimally to the different crops grown in different types of soils up to the tertiary level or allocation unit. The model has four phases. In the first phase, all the possible irrigation strategies are generated for each crop-soil-region combination. The second phase prepares the irrigation program for each strategy, taking into account the response of the crop to the water deficit. The third phase selects the optimal and efficient irrigation programs. In the fourth phase of the model, irrigation programs are modified by incorporating the conveyance and the distribution efficiencies. These irrigation programs are then used for allocating the land and water resources and preparing the water release schedule for the canal network.  相似文献   

6.
The resource allocation model, area and water allocation model, incorporates the concept of deficit irrigation through a variable depth irrigation approach, VDI. It uses this to allocate land and water resources optimally to different crops in a heterogeneous irrigation scheme with limited water under rotational water supply. This model was applied to a medium irrigation scheme in India as a case study, to obtain the land and water allocation plans. These optimal allocation plans were compared to those obtained by using the model with the existing approach (full irrigation with a fixed irrigation interval of 21 days in Rabi and 14 days in the summer season). The allocation plans were obtained taking into account the different parameters that were included in the model, such as crops and cropping pattern, soils, irrigation interval, initial reservoir storage volumes, efficiencies, and the outlet and canal capacities. The total net benefits were compared for the two cases of fixed cropping distribution and free cropping distribution and a sensitivity analysis was conducted on other parameters. Summaries of the allocation plans with the VDI approach are presented for the two cases. The total net benefits obtained with the VDI approach introduced in the model were found to be 22% higher than those obtained with the existing approach. The results of this study are thus indicative of the benefits of deficit irrigation and its application within irrigation schemes that have limited water supply.  相似文献   

7.
Residential Irrigation Water Use in Central Florida   总被引:4,自引:0,他引:4  
Automatic inground irrigation is a common option for residential homeowners desiring high-quality landscapes in Florida. However, rapid growth is straining water supplies in some areas of the state. The first objective of this study was to document residential irrigation water use in the Central Florida ridge region on typical residential landscapes (T1). The second objective was to determine if scheduling irrigation by setting controllers based on historical evapotranspiration (ET) (T2) and reducing the percentage of turf area combined with setting the controllers based on historical ET (T3) would lead to reductions in irrigation water use. The time frame of this study was 30?months beginning in January 2003. Irrigation accounted for 64% of the residential water use volume over all homes monitored during this project. The T1 homes had an average monthly water use of 149?mm/month. Compared to the T1 homes, T2 resulted in a 30% reduction (105?mm/month), and T3 had a 50% reduction (74?mm/month) in average monthly water use. Average monthly water use was significantly different (p<0.001) across the three irrigation treatments. Setting the irrigation controllers to apply water according to seasonal demand resulted in significantly less irrigation water applied. In addition, increasing the proportion of landscape area from 23% (T1 and T2) ornamental plants irrigated with sprinklers to 62% and irrigated with micro-irrigation (T3) resulted in the largest reduction in irrigation water applied. Compared to T2 where only the irrigation controllers were adjusted, this additional decrease in irrigation water applied was a result of low volume application on only a portion of the landscaped beds where irrigation is only applied to the root zone of plants.  相似文献   

8.
Extensive field data and calibrated flow and salt-transport models characterize the spatial and temporal patterns of salinity and waterlogging in an irrigated western river valley. Over three irrigation seasons, average seasonal aquifer recharge from irrigated fields in a 50,600?ha study area ranges from 0.59?to?0.99?m, including contribution from precipitation. The salinity of irrigation water varies from 618?to?1,090?mg/L. The water table is shallow, with 16 to 33% of irrigated land underlaid by an average water table less than 2?m deep. Average water table salinity ranges from 2,680?to?3,015?mg/L, and average soil salinity from 2,490?to?3,860?mg/L. Crop yield reductions from salinity and waterlogging range from 0 to 89% on fields, with regional averages ranging from 11 to 19%. Annual salt loading to the river from subsurface return flows, generated in large part by dissolution from irrigation recharge, averages about 533?kg/irrigated?ha?per?km. Upflux from shallow water tables under fallow ground contributes to about 65?million?m3 (52,600?acre-ft) per year of nonbeneficial consumption. Beyond problem identification, the developed database and models provide a basis for effectively addressing these problems through a systematic and comparative assessment of alternative solutions.  相似文献   

9.
Optimum land and water allocation to different crops grown in different regions of an irrigation scheme is a complex process, especially when these irrigation schemes are characterized by different soils and environment and by a large network of canals. At the same time if the water supply in the irrigation schemes is limited, there is a need to allocate water both efficiently and equitably. This paper describes the approach to include both productivity (efficiency) and equity in the allocation process and to develop the allocation plans for optimum productivity and/or maximum equity for such irrigation schemes. The approach presented in this paper considers the different dimensions of equity such as water distribution over the season, water distribution during each irrigation, and benefits generated. It also includes distribution and conveyance losses while allocating water equitably to different allocation units. This paper explains the approach with the help of the area and water allocation model which uses the simulation–optimization technique for optimum allocation of land and water resources to different crops grown in different allocation units of the irrigation scheme.  相似文献   

10.
In closing river basins where nearly all available water is committed to existing uses, downstream irrigation projects are expected to experience water shortages more frequently. Understanding the scope for resilience and adaptation of large surface irrigation systems is vital to the development of management strategies designed to mitigate the impact of river basin closure on food production and the livelihoods of farmers. A multilevel analysis (farm-level surveys and regional assessment through remote-sensing techniques and statistics) of the dynamics of irrigation and land use in the Nagarjuna Sagar project (South India) in times of changing water availability (2000–2006) highlights that during low-flow years, there is large-scale adoption of rainfed or supplementary irrigated crops that have lower land productivity but higher water productivity, and that a large fraction of land is fallowed. Cropping pattern changes during the drought reveal short-term coping strategies rather than long-term evolutions: after the shock, farmers reverted to their usual cropping patterns during years with adequate canal supplies. For the sequence of water supply fluctuations observed from 2000 to 2006, the Nagarjuna Sagar irrigation system shows a high level of sensitivity to short-term perturbations, but long-term resilience if flows recover. Management strategies accounting for local-level adaptability will be necessary to mitigate the impacts of low-flow years but there is scope for improvement of the performance of the system.  相似文献   

11.
Saline high water tables pose a growing threat to the world’s productive irrigated land. Much of this land lies along arid alluvial plains, where solutions must now be developed in the context of changing constraints on river management. Findings are presented from the preliminary phase of a project aimed at developing, through well-conceived data collection and modeling, strategies to sustain irrigated agriculture in the salinity-threatened lower Arkansas River Basin of Colorado. Extensive field data from a representative subregion of the valley reveal the nature and variability of water table depth and salinity, irrigation efficiency and salt loading, and soil salinity. The shallow water table had an average salinity concentration of 3,100 mg/L and an average depth of 2.1 m, and was less than 1.5 m deep under about 25% of the area. Evidence reveals low irrigation efficiencies and high salt loading under each of six canals serving the subregion. Water table depths less than 2.5–3 m contributed to soil salinity levels that exceed threshold tolerances for crops under about 70% of the area. Preliminary steady-state modeling indicates that only limited improvement can be expected from vertical drainage derived from increased pumping, or from decreased recharge brought about by reduced overirrigation. Investments in canal lining, horizontal subsurface drainage, and improved river conditions also will need consideration.  相似文献   

12.
Crop evapotranspiration (ETc) and crop coefficient (Kco) values of four clean-cultivated navel-orange orchards that were irrigated with microsprinklers, having different canopy features (e.g., age, height, and canopy cover) were evaluated. Half-hourly values of latent heat flux density were estimated as the residual of the energy balance equation using measured net radiation (Rn), soil heat flux density (G), and sensible heat flux density (H) estimated using the surface renewal method. Hourly means of latent heat flux density (LE) were calculated and were divided by the latent heat of vaporization (L) to obtain ETc. Crop coefficients were determined by calculating the ratio Kco = ETc/ETo, with reference evapotranspiration (ETo) determined using the hourly Penman–Monteith equation for short canopies. The estimated Kco values ranged from 0.45 to 0.93 for canopy covers having between 3.5 and 70% ground shading. The Kco values were compared with Kc values from FAO 24 (reported by Doorenbos and Pruitt in 1975) and FAO 56 (reported by Allen et al. in 1998) and with Kc values from research papers that estimated reference ET from pan evaporation data using the FAO 24 method. The observed Kco values were slightly higher than Kc values for clean-cultivated orchards with high-frequency drip irrigation in Arizona and were slightly lower than for nontilled orchards in Florida. The Kco values were considerably higher than Kc values from FAO 24 and FAO 56 and were higher than Kc values from border-irrigated orchards near Valencia, Spain.  相似文献   

13.
Improvements in irrigation efficiency are well documented when changing from flood to sprinkler irrigation methods; however, other impacts to the watershed associated with this change are not well known. The resulting impacts to a river basin hydrology when irrigation and conveyance methods are changed are the focus of this study. In an attempt to improve water application and conveyance efficiencies in the Salt River Basin of western Wyoming, irrigation practices were changed from flood irrigation to sprinkler irrigation beginning in the late 1960s, with completion by the mid-1970s. Based upon a water balance, flow in the Salt River increased an average of 65.62 MCM/year. Return flow timing was also impacted by the conversion to sprinkler irrigation. Flows increased 34% in May and 50% in June, while decreasing 15 and 14% in August and September. These changes may have coincided with decreases in groundwater storage. However, analysis of changes in groundwater levels with time was inconclusive. Surface water total dissolved solids (TDS) appears unaffected by the conversion in irrigation practices, while limited groundwater quality data indicate that TDS values are lower in sprinkler irrigated areas.  相似文献   

14.
Estimation of Crop Coefficients Using Satellite Remote Sensing   总被引:1,自引:0,他引:1  
Crop coefficient (Kc) based estimation of crop evapotranspiration (ETc) is one of the most commonly used methods for irrigation water management. The standardized FAO56 Penman-Monteith approach for estimating ETc from reference evapotranspiration and tabulated generalized Kc values has been widely adopted worldwide to estimate ETc. In this study, we presented a modified approach toward estimating Kc values from remotely sensed data. The surface energy balance algorithm for land model was used for estimating the spatial distribution of ETc for major agronomic crops during the 2005 growing season in southcentral Nebraska. The alfalfa-based reference evapotranspiration (ETr) was calculated using data from multiple automatic weather stations with geostatistical analysis. The Kc values were estimated based on ETc and ETr (i.e., Kc = ETc/ETr). A land use map was used for sampling and profiling the Kc values from the satellite overpass for the major crops grown in southcentral Nebraska. Finally, a regression model was developed to establish the relationship between the normalized difference vegetation index (NDVI) and the ETr-based crop coefficients (Kcr) for corn, soybeans, sorghum, and alfalfa. We found that the coefficients of variation (CV) for NDVI, as well as for Kcr of crops were lower during the midseason as compared to the early and late growing seasons. High CV values during the early growing season can be attributed to differences in planting dates between the fields, whereas high CVs during the late season can be attributed to differences in maturity dates of the crops, variety, and management practices. There was a good relationship between Kcr and NDVI for all the crops except alfalfa. Validation of the developed model for irrigated corn showed very promising results. There was a good correlation between the NDVI-estimated Kcr and the Bowen ratio energy balance system based Kcr with a R2 of 0.74 and a low root mean square difference of 0.21. This approach can be a very useful tool for a large (watershed or regional) scale estimation of evapotranspiration using the crop coefficient and reference evapotranspiration approach.  相似文献   

15.
Existing technologies have been tailored to deliver cost-effective irrigation on a railway embankment and excavated steep slopes (referred to as batters) within a semiarid environment. Irrigation is to aid the establishment of 100% grass cover within a few weeks to mitigate soil erosion problems. It is based on water sourced from a temporary excavated pond plus the use of a solar powered pump and a drip irrigation system. Railway batter erosion remediation is timed for the wet summer season when irrigation can be used to supplement natural rainfall. For a given irrigation demand and catchment area, critical (minimum) pond volume is estimated from regional charts developed for ungauged catchments. About 20% of the critical volume is added to account for evaporation losses and dead storage. Also, seepage losses need to be considered if the soil is medium to coarse textured and if the pond is not lined with an impermeable material. Initial results are very encouraging with a cost estimate of AU$2.74/m2 of batter area treated (irrigated). Irrigation unit cost is expected to decrease with a larger scale irrigated batter area and the refinement of technologies and installation procedures. Although irrigation methodologies were developed for railway embankments and excavated slopes, they can also be used for erosion control on steep slopes such as road embankments or excavated slopes and earth dam side slopes.  相似文献   

16.
Landscapes continuously irrigated without proper drainage for a long period of time frequently experience a rise in water-table levels. Waterlogging and salinization of irrigated areas are immediate impacts of this situation in arid areas, especially when groundwater salinity is high. Flooding and heavy rainfall further recharge groundwater and accelerate these impacts. An understanding of regional groundwater dynamics is required to implement land and water management strategies. The purpose of this study is to quantify the impact of flood and rain events on spatial scales using a geographic information system (GIS). This paper presents a case study of shallow water-table levels and salinity problems in the Wakool irrigation district located in the Murray irrigation area with groundwater average electrical conductivity greater than 25,000?μS/cm. This area has experienced several large flood events during the past several decades. Piezometric data are interpolated to generate a water-table surface for each event by applying the Kriging method of spatial interpolation using the linear variogram model. Spatial and temporal analysis of major flood events over the last four decades is conducted using calculated water-table surfaces to quantify the change in groundwater storage and shallow water-table levels. The drainage impact of a subsurface drainage scheme partially covering the area has also been quantified in this paper. The results show that flooding and local rainfall have a significant impact on shallow groundwater. The study also found that postflood climatic conditions (evaporation and rainfall) play a significant role in the groundwater dynamics of the area. The spatial net average groundwater recharge during the flooding events ranges from 0.19 to 0.52?ML/ha. The GIS-based techniques described in this paper can be used for net recharge estimation in semiarid regions where it is important to quantify net recharge impacts of regional flooding and local rainfall. The spatial visualization of the net recharge in a GIS environment can help prioritize management actions by local communities.  相似文献   

17.
In the 1990s, Turkey started a fast transfer program in which a large proportion of government-managed irrigation systems were put into the hands of Water Users’ Associations (WUAs) in a very short space of time. One of the first systems to be handed over was the Gediz Basin. This study aims to set out the effects of the transfer of irrigation management in this basin on water and land productivity and water supply. For this purpose, the indicators of productivity and water supply proposed by the International Water Management Institute have been used to show changes between the pretransfer, transfer, and post-transfer periods. WUA averages for the post-transfer period calculated from the results ranged $2,076–$2,898?ha?1 for output per command area, $2,747–$4,585?ha?1 for output per irrigated area, $0.26–$0.68?m?3 for output per irrigation supply, $0.30–$0.63?m?3 for output per unit water consumed, 0.88–1.49 for relative water supply, and 0.99–1.99 for relative irrigation supply. During the period evaluated by the study, there was a decline in water supply indicators, as against a steady increase in the productivity of water and land use. The basic reason for this decrease in supply is the long-lasting and ongoing drought in the region.  相似文献   

18.
Irrigation Performance using Hydrological and Remote Sensing Modeling   总被引:2,自引:0,他引:2  
Development of water saving measures requires a thorough understanding of the water balance. Irrigation performance and water accounting are useful tools to assess water use and related productivity. Remote sensing and a hydrological model were applied to an irrigation project in western Turkey to estimate the water balance to support water use and productivity analyses. Remote sensing techniques can produce high spatial coverage of important terms in the water balance for large areas, but at the cost of a rather sparse temporal resolution. Hydrological models can produce all the terms of the water balance at a high temporal, but low spatial resolution. Actual evapotranspiration for an irrigated area in western Turkey was calculated using the surface energy balance algorithm for land (SEBAL) remote sensing land algorithm for two Landsat images. The hydrological model soil-water-atmosphere-plant (SWAP) was setup to simulate the water balance for the same area, assuming a certain distribution in soil properties, planting dates and irrigation practices. A comparison between evapotranspiration determined from SEBAL and from SWAP was made and differences were minimized by adapting the distribution in planting date and irrigation practice. The optimized input data for SWAP were used to simulate all terms of the accumulated water balance for the entire irrigation project, and subsequently used to derive the irrigation performance indicators. The innovative methodology presented is attractive as it diminishes the need of field data and combines the strong points of remotely sensed techniques and hydrological models.  相似文献   

19.
A subsurface drip irrigation (SDI) system was installed in the Piedmont of North Carolina in a clay soil in the fall of 2001 to test the effect of dripline spacing on corn and soybean yield. The system was zoned into three sections; each section was cropped to either corn (Zea mays L.), full-season soybean [Glycine max (L.) Merr.], or winter wheat (Triticum aestivum) double cropped to soybean representing any year of a typical crop rotation in the region. Each section had four plots; two SDI plots with dripline spacing at either 1.52 or 2.28 m, an overhead sprinkler irrigated plot, and an unirrigated plot. There was no difference in average corn grain yield for 2002–2005 between dripline spacings or between either dripline spacing and sprinkler. Irrigation water use efficiency (IWUE) was greater for sprinkler irrigated corn than for either SDI treatment and there was no difference in IWUE in soybean. Water typically moved laterally from the driplines 0.38 to 0.50 m. SDI yield and IWUE increased relative to sprinkler yields and water use efficiency in the second and third year of the study. This may suggest that initial fracturing of the heavy clay soil during SDI system installation and subsequent settling of the soil affected water distribution.  相似文献   

20.
Two low energy precision application (LEPA) sprinkler methods (double-ended socks and bubblers) and two spray sprinkler methods (low-elevation spray application and overhead spray) were used to irrigate corn, grain sorghum, and winter wheat in the Southern High Plains. For full or 100% irrigation, sufficient 25-mm applications were applied to maintain soil water at non-yield-limiting levels determined in earlier research with the three crops. Deficit-irrigated treatments were irrigated on the same days as the control treatment in 25 or 33% increments of the fully irrigated amount. Irrigation water was applied to or above alternate furrows with a three-span lateral move irrigation system. Corn and sorghum were grown on beds and furrows with all furrows diked, and wheat was flat-planted without basin tillage. Grain yields increased significantly with irrigation amount (p ≤ 0.05) for all crops during all years. With full irrigation, grain yields varied little among the sprinkler methods, and yields averaged 13.5, 8.9, and 4.6 Mg∕ha for corn, sorghum, and wheat, respectively. With the 25 and 50% deficit irrigation amounts, sorghum yields with LEPA irrigation were 1.1 Mg∕ha larger than with the two spray methods. For 75% irrigation of sorghum and for deficit irrigation of the other two crops, there was little yield difference between the LEPA and spray sprinkler methods. Grain yields were significantly correlated with seasonal water use with regression coefficients of 2.89, 1.84, and 0.915 kg∕m3 for corn, sorghum, and wheat, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号