首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Considering that high school students spend a large proportion of their waking hours in the school environment, this could be an important location for exposure to indoor allergens. We have investigated the levels of mouse and cockroach allergens in the settled dust and air from 11 schools in a major northeastern US city. Settled dust samples were vacuumed from 87 classrooms, three times throughout the school year. Two separate air samples (flow = 2.5 lpm) were collected by 53 students over a 5-day period from both their school and their home. Mouse allergen (MUP) in the dust varied greatly between schools with geometric means ranging from 0.21 to 133 microg/g. Mouse allergen was detectable in 81% of the samples collected. Cockroach allergen (Bla g 2) ranged from below limit of detection (<0.003 microg/g) to 1.1 microg/g. Cockroach allergen was detected (>0.003 microg/g) in 71% of the dust samples. Bla g 2 was detected in 22% of airborne samples from the schools. By comparison, mouse allergen was only detected in 5%. These results indicate that the school may be an important location for exposure to allergens from mice and cockroaches and is an indoor environment that should be considered in an overall allergen intervention strategy. PRACTICAL IMPLICATIONS: To date, cockroach and mouse allergen intervention strategies have been mainly focused on the home environment. Considering that children spend a significant amount of time in schools, some studies have assessed cockroach allergen levels in schools. This study provides a clearer picture of the distribution and variability of not only cockroach allergen, but also mouse allergen in the school environment. In addition, this study describes limitations of personal air sampling in a student population. Our results suggest that although cockroach and mouse allergens are commonly recovered in classroom dust samples of inner city schools, cockroach allergens are recovered in the personal air samples with a greater frequency relative to mouse allergens.  相似文献   

2.
Studies that estimate indoor aeroallergen exposure typically measure a pre‐selected limited range of allergens. In this study, inhalable aeroallergen particles were quantified using the halogen immunoassay (HIA) to determine the contribution of fungal and non‐fungal aeroallergens to total allergen exposure. Bioaerosols from 39 homes of fungal‐allergic subjects were sampled using inhalable fraction samplers and immunostained by HIA using resident subject's immunoglobulin E (IgE) to detect allergen‐laden particles. Fungal aerosols as well as particles carrying mite, cat, and cockroach allergens were identified and enumerated by HIA. Reservoir dust‐mite (Der p 1), cat (Fel d 1), and cockroach (Bla g 1) allergen concentrations were quantified by ELISA. Fungal particles that bound subject's IgE in the HIA were 1.7 (bedroom)‐ and 1.4 (living room)‐fold more concentrated than Der p 1, Fel d 1, and Bla g 1 allergen particles combined. Predominant fungal conidia that bound IgE were derived from common environmental genera including Cladosporium and other fungi that produce amerospores. Airborne mite, cat, and cockroach allergen particle counts were not associated with reservoir concentrations determined by ELISA. This study demonstrates that inhalable fungal aerosols are the predominant aeroallergen sources in Sydney homes and should be considered in future exposure assessments.  相似文献   

3.
Allergen exposure is a risk to develop an IgE-mediated sensitization. The amount of allergen inhaled per unit time should be related to the amount present in the air, i.e. airborne allergen. Thus, measuring allergen levels in the air would be more relevant than measuring allergen levels in dust. Allergens are present in the air in very minute quantities and usually become airborne after disturbance. Large variation of allergen levels have been found in dust. In this study, we measured variability of airborne cat allergen, Fel d1, in a public place using a high-volume air-sampler. We also studied the distribution and relationship between dust and airborne cat allergens in homes and schools. Air samples were collected at three different airflow rates, i.e. 55, 40, and 30 m3 of air per hour. The concentration of airborne Fel d1 in the community gymnastic hall varied from 1 to 10 pg/m3 within a period of 3 weeks, at airflow rates 55-30 m3/h. The coefficient of variation for repeated samplings was 14-43% (day-to-day variation) and 27-38% (within-day variation). As expected, higher levels of airborne cat allergens were found in homes with cats than in cat-free environments. There was a significant relationship between cat allergen levels in dust and air (r=0.7, P<0.01). Our study demonstrates that when measuring airborne cat allergen a large variation is observed within a day and between days. The large variability of measurement may be explained by the disturbance in the environments. We suggest, that when exposure assessment is made the environment in question should be analyzed, if possible in several occasions.  相似文献   

4.
On-site home visits, consisting of a home inspection, dust sampling, and questionnaires were conducted in 777 homes belonging to an ongoing birth cohort study in Cincinnati, Ohio. Various home characteristics were investigated, and antigen levels (concentrations [microg/g] and loadings [microg/m(2)]; IU for cockroach allergen) in floor dust samples collected in child's primary activity room were analyzed by ELISA. Monoclonal antibodies were used for the analysis of cat, house dust mite, and cockroach allergens, and polyclonal antibodies for Alternaria and dog antigens. The relationship between the antigen levels and home characteristics was investigated through a generalized multiple regression model. More than half of the homes experienced mold/water damage. Cats and dogs were present in 19.7% and 31.1% of homes, respectively. More than 90% of homes had either carpet or area rug covering their floors. Among 777 homes, 87-92% of homes had measurable amount of Alternaria, cat, and dog allergen/antigen in house dust, whereas only 38% and 14% of homes had measurable levels of house dust mite and cockroach, respectively. Alternaria antigen level in house dust was not associated with visual mold/water damage, which was suspected to be one of the sources for this antigen in homes. Instead, the antigen level was high in samples taken in fall and in homes having dogs implicating that Alternaria antigen appears to be transported from outdoors to indoors. A high level was also measured in homes using a dehumidifier (these homes have experienced excessive humidity) and in-home venting of clothes dryer, which might be associated with microclimate affecting mold growth and spore release. The allergen/antigen level (both concentration and loading) of cat, dog and cockroach was significantly associated with the number of cats and dogs, or the appearance of cockroaches, respectively. High level of house dust mite allergen was measured in bedrooms and in homes using dehumidifier and no central forced air heating system. Having indoor plants was shown to reduce allergen levels. Carpeted floor was found to hold larger amount of antigens than non-carpeted floor. Antigen loading demonstrated more consistent and larger numbers of associations with home characteristics compared to antigen concentration. This study encompassed a wide range of home characteristics and various antigen types. Our findings provide information on home characteristics that can be used for allergen avoidance and in planning future exposure assessment studies.  相似文献   

5.
Distribution variations of multi allergens at asthmatic children's homes   总被引:1,自引:0,他引:1  
Increasing asthma prevalence is evident in many countries and childhood asthma has also become one of the most common chronic diseases in children. Exposure to indoor allergens has been be attributed to a significant increase in asthma occurrence. Meanwhile, allergen distribution varies widely among different countries. This brief investigation reports the distribution of common indoor allergens, such as mite (Dermatophagoides pteronyssinus, Der p 1 and Der p 2), cat (Felis domesticus, Fel d 1), and German cockroach allergens (Blattella germanica, Bla g 1) at different sites of asthmatic children in Taiwan. Approximately 40 asthmatic children's homes participated in this study and the cohort was followed prospectively for approximately 6 months, starting in December until the following May. Dust samples were collected from each child's mattress, and bedroom and living room floors. All samples were analyzed with monoclonal antibody-based enzyme-linked immunosorbent assay (ELISA). Statistical difference of Der p 1 concen trations is observed among those on the mattress, bedroom and living room floor, except for in May. Seasonal variation in Der p 1 levels on the mattress and bedroom floor is also significant (P < 0.025 and 0.001, respectively). Distributional variation seems to be significant for most allergens among sites within homes in most seasons. Therefore, if only one sample is to be taken, the month of May would be a more ideal choice of study period, and detailed sampling across sites appears to be necessary should the true environmental exposure of allergens be desired.  相似文献   

6.
Frankel M  Timm M  Hansen EW  Madsen AM 《Indoor air》2012,22(5):405-414
Abstract Indoor microbial exposure has been related to allergy and respiratory disorders. However, the lack of standardized sampling methodology is problematic when investigating dose-response relationships between exposure and health effects. In this study, different sampling methods were compared regarding their assessment of microbial exposures, including culturable fungi and bacteria, endotoxin, as well as the total inflammatory potential (TIP) of dust samples from Danish homes. The Gesamtstaubprobenahme (GSP) filter sampler and BioSampler were used for sampling of airborne dust, whereas the dust fall collector (DFC), the electrostatic dust fall collector (EDC), and vacuum cleaner were used for sampling of settled dust. The GSP assessed significantly higher microbial levels than the BioSampler, yet measurements from both samplers correlated significantly. Considerably higher levels of fungi, endotoxin, and TIP were found in the EDC compared with the DFC, and regarding fungi, the EDC correlated more strongly and significantly with vacuumed dust than the DFC. Fungi in EDC and vacuum dust correlated most strongly with airborne dust, and in particular, the measurements from the EDC associated well with those from GSP. Settled dust from the EDC was most representative of airborne dust and may thus be considered as a surrogate for the assessment of indoor airborne microbial exposure. PRACTICAL IMPLICATIONS: Significant discrepancies between sampling methods regarding indoor microbial exposures have been revealed. This study thus facilitates comparison between methods and may therefore be used as a frame of reference when studying the literature or when conducting further studies on indoor microbial exposure. Results also imply that the relatively simple EDC method for the collection of settled dust may be used as an alternative to otherwise tedious and time-consuming airborne dust sampling.  相似文献   

7.
BACKGROUND: Exposure to indoor allergens has already been shown to occur in many public places, including workplaces, in several countries. Aim of this study was to measure the levels of house dust mites, cat and cockroach allergens in indoor workplaces (offices and archives) in Italy and to evaluate the possible relationships between allergen levels and building characteristics, type of ventilation, indoor relative humidity and temperature. METHODS: Der f 1 and Der p 1, Fel d 1, Bla g 2 were measured by ELISA in dust samples collected from floors or upholstered seats of 160 workplaces. RESULTS: Detectable Der p 1 levels were found in 86 (54%) workplaces Der f 1 in 87 (55%), Fel d 1 in 86 (54%) and Bla g 2 in 3 (1.9%). Der p 1 allergen concentrations expressed per weight were higher than the proposed sensitization thresholds in 7 samples, Der f 1 in 5, Fel d 1 in 6 and Bla g 2 in 3. The highest allergen levels were detected in samples from upholstered seats. A significant correlation was found between Der f 1 level on floors, expressed per surface, and indoor temperature (r = 0.39; P < 0.01). CONCLUSIONS: In our study we found that upholstered seats in workplaces in Italy may constitute a significant reservoir both of house dust mites and cat allergens. Exposure to these allergens in workplaces may represent a risk factor for elicitation of symptoms and/or induction/maintenance of inflammation in allergic individuals and might also constitute a risk factor for sensitization.  相似文献   

8.
Residential endotoxin exposure is associated with protective and pathogenic health outcomes. Evaporative coolers, an energy‐efficient type of air conditioner used in dry climates, are a potential source of indoor endotoxins; however, this association is largely unstudied. We collected settled dust biannually from four locations in homes with evaporative coolers (n=18) and central air conditioners (n=22) in Utah County, Utah (USA), during winter (Jan‐Apr) and summer (Aug‐Sept), 2014. Dust samples (n=281) were analyzed by the Limulus amebocyte lysate test. Housing factors were measured by survey, and indoor temperature and relative humidity measures were collected during both seasons. Endotoxin concentrations (EU/mg) were significantly higher in homes with evaporative coolers from mattress and bedroom floor samples during both seasons. Endotoxin surface loads (EU/m2) were significantly higher in homes with evaporative coolers from mattress and bedroom floor samples during both seasons and in upholstered furniture during winter. For the nine significant season‐by‐location comparisons, EU/mg and EU/m2 were approximately three to six times greater in homes using evaporative coolers. A plausible explanation for these findings is that evaporative coolers serve as a reservoir and distribution system for Gram‐negative bacteria or their cell wall components in homes.  相似文献   

9.
Temperature‐controlled laminar airflow improves symptoms in atopic asthmatics, but its effects on personal allergen exposure are unknown. We aimed to evaluate its effects on personal cat allergen and particulate exposures in a simulated bedroom environment. Five healthy volunteers lay under an active and an inactive temperature‐controlled laminar airflow device for 175 min, in a simulated bedroom containing bedding from a cat owner. Total airborne particles (≥0.5 – ≥10 μm diameter) were quantified with a laser particle counter. Airborne allergen was sampled with Institute of Occupational Medicine filters. Inhaled exposure was sampled with nasal air samplers. Allergen‐containing particles were quantified by immunoassay. Treatment reduced total airborne particles (>0.5 μm diameter) by >99% (P < 0.001) and reduced airborne allergen concentration within the breathing zone (ratio of median counts = 30, P = 0.043). Treatment reduced inhaled allergen (ratio of median counts = 7, P = 0.043). Treatment was not associated with a change in airborne allergen concentration outside of the breathing zone (P = 0.160). Temperature‐controlled laminar airflow treatment of individuals in an allergen‐rich experimental environment results in significant reductions in breathing zone allergenic and non‐allergenic particle exposure, and in inhaled cat allergen exposure. These findings may explain the clinical benefits of temperature‐controlled laminar airflow.  相似文献   

10.
Toxic microbial secondary metabolites have been proposed to be related to adverse health effects observed in moisture-damaged buildings. Initial steps in assessing the actual risk include the characterization of the exposure. In our study, we applied a multi-analyte tandem mass spectrometry-based methodology on sample materials of severely moisture-damaged homes, aiming to qualitatively and quantitatively describe the variety of microbial metabolites occurring in building materials and different dust sample types. From 69 indoor samples, all were positive for at least one of the 186 analytes targeted and as many as 33 different microbial metabolites were found. For the first time, the presence of toxic bacterial metabolites and their co-occurrence with mycotoxins were shown for indoor samples. The bacterial compounds monactin, nonactin, staurosporin and valinomycin were exclusively detected in building materials from moist structures, while chloramphenicol was particularly prevalent in house dusts, including settled airborne dust. These bacterial metabolites are highly bioactive compounds produced by Streptomyces spp., a group of microbes that is considered a moisture damage indicator in indoor environments. We show that toxic bacterial metabolites need to be considered as being part of very complex and diverse microbial exposures in 'moldy' buildings. PRACTICAL IMPLICATIONS: Bacterial toxins co-occur with mycotoxins in moisture-damaged indoor environments. These compounds are measurable also in settled airborne dust, indicating that inhalation exposure takes place. In attempts to characterize exposures to microbial metabolites not only mycotoxins but also bacterial metabolites have to be targeted by the analytical methods applied. We recommend including analysis of samples of outdoor air in the course of future indoor assessments, in an effort to better understand the outdoor contribution to the indoor presence of microbial toxins. There is a need for a sound risk assessment concerning the exposure to indoor microbial toxins at concentrations detectable in moisture-damaged indoor environments.  相似文献   

11.
Kim JL  Elfman L  Norbäck D 《Indoor air》2007,17(2):122-129
We studied reports on respiratory symptoms, asthma and atopic sensitisation in relation to allergen contamination in Korean schools and compared with data from a previous Swedish study performed in eight primary schools. Korean pupils (n = 2365) in 12 primary schools first completed a questionnaire. Then airborne and settled dust were collected from 34 classrooms and analyzed for allergens by ELISA. In both countries, boys reported more symptoms. The prevalence of wheeze was similar, while daytime [odds ratio (OR) = 14.0, 95% confidence interval (CI) = 9.0-21.9] and nocturnal breathlessness (OR = 3.1, 95% CI = 1.5-6.4) were much higher among Korean students. In Korean schools, dog allergen (Can f 1) was the most common followed by mite allergen (Der f 1), while cat (Fel d 1), dog, and horse allergen (Equ cx) were abundant in Sweden. Moreover, CO(2) levels were high in most Korean schools (range 907-4113 ppm). There was an association between allergen levels in dust and air samples, and number of pet-keepers in the classrooms. In conclusion, allergen contamination in Korean schools may be an important public issue. PRACTICAL IMPLICATIONS: This study showed that furry pet allergen contamination was common in both Korean and Swedish schools. In addition, house dust-mite (Der f 1) allergen contamination was common in Korean schools, probably because of transport of allergen from other environments. Transfer should therefore be minimized. Korean schools had high CO(2) levels and the concept of mechanical ventilation should be introduced. Measurement of airborne allergen levels is quite new and seems to be a more convenient and correct way to monitor allergen exposure in classrooms.  相似文献   

12.
INTRODUCTION: Cat allergen is a major cause of morbidity among sensitised asthma patients, but little is known about distribution of cat allergen exposure and its determinants in homes. METHODS: We measured cat allergen and potential determinants of cat allergen levels in more than 1000 homes. House dust was collected from children's mattresses and living room floors in approximately 360 homes in The Netherlands, Sweden and Germany and analysed for Fel d 1 in one central laboratory. Exposure was expressed both in concentration (ng/g) and in loads (ng/m2). RESULTS: Levels on mattresses were similar in Sweden and Germany but higher on Dutch mattresses. Dutch floors had higher concentrations than Swedish floors, which had higher concentrations than German floors. The differences in load were less clear. Cat allergen on mattress and floor were moderately to highly correlated. The most important variable quantifying cat allergen variation was the presence of a cat. Floor cover type and last time that floor was vacuumed were important in all three countries. The ratio of cat allergen loads between mattresses from homes with and without cats was higher for Sweden and Germany than for The Netherlands. This is likely related to higher prevalence of cat ownership in The Netherlands which leads to more contamination of homes in which cats were never held. Dust samples from 27-35% of mattresses from homes without cats contained more than 1000 ng/g cat allergen. CONCLUSION: With the exception of cat ownership and floor cover, questionnaire data on housing characteristics did not accurately predict cat allergen in the home.  相似文献   

13.
Air and dust samples were collected on two floors of an office building during a double-blind particle intervention study to examine spatial and temporal variability of airborne endotoxin over a period of weeks, and to characterize endotoxin activity and lipopolysaccharide (LPS) content in carpet and chair dust. Air samples were collected on multiple days within and across weeks. Dust samples were collected from carpets and chairs one day per week for three weeks. Endotoxin was measured using a Limulus assay. Dust samples were analyzed for LPS by determination of 3-hydroxy fatty acids (3-OHFAs) using gas chromatography-mass spectrometry. The geometric mean (geometric standard deviation) for 96 indoor air samples was 0.24 (1.6) EU/m3. Significant within-floor spatial variation of airborne endotoxin was found (P < 0.0001, n = 80). Temporal variability of airborne endotoxin was not significant across weeks. Mean (+/- SD) endotoxin levels in carpet dust (59 +/- 9.3 EU/mg dust, n = 12) and in chair dust (38 +/- 7.7 EU/mg dust, n = 10) were significantly different (P < 0.001). Carbon chain length-dependent differences in 3-OHFA levels by dust source and floor were found. Enhanced air filtration did not significantly affect airborne endotoxin (P = 0.62); however, total dust mass and total endotoxin in carpet dust samples increased significantly after enhanced surface cleaning (P < 0.01). These findings suggest that spatial variability, dust source, and surface cleaning may influence building occupant exposures to endotoxin.  相似文献   

14.
Zhao ZH  Elfman L  Wang ZH  Zhang Z  Norbäck D 《Indoor air》2006,16(6):404-413
We compared the school environment, asthma and allergy in 10 schools in Taiyuan, China, with eight schools in Uppsala, Sweden. In total 2193 pupils (mean age 13 years) participated. Chinese pupils had more respiratory symptoms, particularly daytime breathlessness after exercise (29.8% vs. 7.1%; P < 0.001), while cat allergy (1.2% vs. 6.6%; P < 0.001) and dog allergy (1.3% vs. 4.0%; P < 0.01) was less common. Cumulative incidence of asthma (1.8% vs. 9.5%; P < 0.001) and doctor's diagnosed asthma (1.2% vs. 9.0%; P < 0.001) were less common in China, indicating an under-diagnosis of asthma. Chinese classrooms were colder (mean 14.7 vs. 21.4 degrees C), more humid (mean 42% vs. 31% RH) and had higher CO2-levels (mean 2211 vs. 761 ppm). Levels of cat (Fel d1), dog (Can f1) allergens were low in settled dust from China (< 200 ng/g dust), but high in airborne dust on Petri-dishes (GM 16.8 ng/m2/day for Fel d1 and 17.7 for Can f1). The Swedish settled dust contained cat, dog and horse allergens in high levels (median 1300 ng/g, 1650 ng/g, 1250 U/g dust, respectively). In conclusion, there were large differences in the school environment, and in respiratory symptom and allergy. Allergen measurements in settled dust only may largely underestimate the classroom exposure. Practical Implications There is a need to improve the school environment, both in China and Sweden. The Swedish schools contained high levels of cat, dog and horse allergens and more amounts of open shelves and textiles that can accumulate dust and allergens. The air measurements indicated that Chinese schools may contain significant amounts of cat and dog allergen, and analysis of settled dust only may not reflect the true allergen exposure. Since the Chinese schools had no mechanical ventilation, they could not fulfill the ventilation standard in winter, and hence there is a need for improving the ventilation. The great discrepancy between respiratory symptoms and reports on asthma, and the high prevalence of attacks of breathlessness without wheeze, may have implication for future questionnaire studies on asthma in China.  相似文献   

15.
Exposure to farming environment in early life has been associated with lower risk for allergic diseases possibly caused by increased exposure to endotoxin. The aims of this study were to compare the reproducibility of different sampling methods for endotoxin, and to determine whether environmental characteristics have different effect on endotoxin levels of different sample types. The reproducibility of sampling methods (bed dust, floor dust, vacuum cleaner dust bag dust, settled dust and air samples) was studied with repeated sampling (five visits during 1 year) in five farming and five urban homes. To examine determinants of endotoxin for different types of dust sample, sampling was conducted once in 12 farming and 17 urban homes. Endotoxin was analyzed using Limulus Amebocyte Lysate assay. Bed dust samples had the best reproducibility (intraclass correlation, ICC=66%), but the difference between farming and non-farming homes was not clear with this sample type. The reproducibility of floor (ICC=52%) and settled dust (ICC=51%) was moderate. With these sample types the difference between farming and non-farming homes was clear. Settled dust had some seasonal variation. Based on this study, the best compromise for sampling for endotoxin appears to be floor dust sample followed by bed and settled dust samples. Practical Implications Endotoxins have been widely measured, even though the validity of different sample types to reflect the endotoxin exposure level of an indoor environment is poorly known. This study shows that bed dust samples have the best reproducibility, but they do not reflect the differences in exposure due to environmental factors such as farming. Floor dust samples with moderate reproducibility may be the best choice for sampling of endotoxin in large field studies.  相似文献   

16.
The impact of an improved wood burning stove (Patsari) in reducing personal exposures and indoor concentrations of particulate matter (PM(2.5)) and carbon monoxide (CO) was evaluated in 60 homes in a rural community of Michoacan, Mexico. Average PM(2.5) 24-h personal exposure was 0.29 mg/m(3) and mean 48-h kitchen concentration was 1.269 mg/m(3) for participating women using the traditional open fire (fogon). If these concentrations are typical of rural conditions in Mexico, a large fraction of the population is chronically exposed to levels of pollution far higher than ambient concentrations found by the Mexican government to be harmful to human health. Installation of an improved Patsari stove in these homes resulted in 74% reduction in median 48-h PM(2.5) concentrations in kitchens and 35% reduction in median 24-h PM(2.5) personal exposures. Corresponding reductions in CO were 77% and 78% for median 48-h kitchen concentrations and median 24-h personal exposures, respectively. The relationship between reductions in median kitchen concentrations and reductions in median personal exposures not only changed for different pollutants, but also differed between traditional and improved stove type, and by stove adoption category. If these reductions are typical, significant bias in the relationship between reductions in particle concentrations and reductions in health impacts may result, if reductions in kitchen concentrations are used as a proxy for personal exposure reductions when evaluating stove interventions. In addition, personal exposure reductions for CO may not reflect similar reductions for PM(2.5). This implies that PM(2.5) personal exposure measurements should be collected or indoor measurements should be combined with better time-activity estimates, which would more accurately reflect the contributions of indoor concentrations to personal exposures. PRACTICAL IMPLICATIONS: Installation of improved cookstoves may result in significant reductions in indoor concentrations of carbon monoxide and fine particulate matter (PM(2.5)), with concurrent but lower reductions in personal exposures. Significant errors may result if reductions in kitchen concentrations are used as a proxy for personal exposure reductions when evaluating stove interventions in epidemiological investigations. Similarly, time microenvironment activity models in these rural homes do not provide robust estimates of individual exposures due to the large spatial heterogeneity in pollutant concentrations and the lack of resolution of time activity diaries to capture movement through these microenvironments.  相似文献   

17.
This study was conducted to assess the current impact of natural gas appliances on air quality in California homes. Data were collected via telephone interviews and measurements inside and outside of 352 homes. Passive samplers measured time‐resolved CO and time‐integrated NOX, NO2, formaldehyde, and acetaldehyde over ~6‐day periods in November 2011 – April 2012 and October 2012 – March 2013. The fraction of indoor NOX and NO2 attributable to indoor sources was estimated. NOX, NO2, and highest 1‐h CO were higher in homes that cooked with gas and increased with amount of gas cooking. NOX and NO2 were higher in homes with cooktop pilot burners, relative to gas cooking without pilots. Homes with a pilot burner on a floor or wall furnace had higher kitchen and bedroom NOX and NO2 compared to homes without a furnace pilot. When scaled to account for varying home size and mixing volume, indoor‐attributed bedroom and kitchen NOX and kitchen NO2 were not higher in homes with wall or floor furnace pilot burners, although bedroom NO2 was higher. In homes that cooked 4 h or more with gas, self‐reported use of kitchen exhaust was associated with lower NOX, NO2, and highest 1‐h CO. Gas appliances were not associated with higher concentrations of formaldehyde or acetaldehyde.  相似文献   

18.
Abstract In rooms where pesticides were applied, air was analysed for its biocide content. Inhabitants of investigated homes attributed their health complaints to pesticide exposure in their homes. Airborne pesticides originating from wood preservatives were sampled on polyurethane foams or Tenax TA and analysed after solvent desorption by HRGC with different types of detector. In investigated homes, concentrations of diazinon, phenthoate, phoxim, propoxur, dichlofluanid, endosulfan, permethrin and tributyltinoxide were found between ≤0.002 and 0.347 μg/m3. In one home, four years after pest control, chlorpyrifos amounted to 0.515 μg/m3. Permethrin emission from a wool carpet ranged between 0.013 and 0.060 μg/m3. Vacuum cleaning for ten minutes increased airborne permethrin up to 0.096 μg/m3. In house dust, diazinon, phenthoate and permethrin were determined in concentrations of 0.60 ≤g/g, 181.00 pg/g and 0.14 μg/g dust, respectively. Estimated inhaled pesticides ranged between ≤0.04 and 10.3 μg/day. Dust ingestion contributed to 0.03–36.2 μg/day. Pesticide intake through inhalation and dust ingestion was estimated to range between 4% and 120% of the ADI-value. Based on today's knowledge, toxic effects are not anticipated.  相似文献   

19.
Hsu NY  Lee CC  Wang JY  Li YC  Chang HW  Chen CY  Bornehag CG  Wu PC  Sundell J  Su HJ 《Indoor air》2012,22(3):186-199
The associated risk of phthalate exposure, both parent compounds in the home and their metabolites in urine, to childhood allergic and respiratory morbidity, after adjusting for exposures of indoor pollutants, especially bioaerosols, was comprehensively assessed. Levels of five phthalates in settled dust from the homes of 101 children (3-9 years old) were measured, along with their corresponding urinary metabolites. Other environmental risk factors, including indoor CO2, PM2.5, formaldehyde, 1,3-β-D-glucan, endotoxin, allergen and fungal levels, were concomitantly examined. Subject's health status was verified by pediatricians, and parents recorded observed daily symptoms of their children for the week that the home investigation visit took place. Significantly increased level of benzylbutyl phthalate, in settled dust, was associated with test case subjects (allergic or asthmatic children). Higher levels of dibutyl phthalate and its metabolites, mono-n-butyl phthalate, and mono-2-ethylhexyl phthalate were found to be the potential risk factors for the health outcomes of interest. Similarly, indoor fungal exposure remained a significant risk factor, especially for reported respiratory symptoms. The relative contribution from exposure to phthalates and indoor biocontaminants in childhood allergic and respiratory morbidity is, for the first time, quantitatively assessed and characterized. PRACTICAL IMPLICATIONS: For asthmatic and allergic children living in subtropical and highly developed environments like homes in Taiwan, controlling environmental exposure of phthalates may be viewed as equally important as avoiding indoor microbial burdens, for the management of allergy-related diseases. It is also recognized that multidisciplinary efforts will be critical in realizing the true underlying mechanisms associated with these observations.  相似文献   

20.
Indoor exposures to allergens, mold spores, and endotoxin have been suggested as etiological agents of asthma; therefore, accurate determination of those exposures, especially in young children (6-36 months), is important for understanding the development of asthma. Because use of personal sampling equipment in this population is difficult, and in children <1 year of age impossible, we developed a personal sampling surrogate: the Pretoddler Inhalable Particulate Environmental Robotic (PIPER) sampler to better estimate their exposures. During sampling, PIPER simulates the activity patterns, speed of motion, and the height of the breathing zones of young children, and mechanically resuspends the deposited dust just as a young child does during running and crawling. The concentrations of allergens, mold spores, and endotoxin measured by PIPER were compared to those measured using traditional stationary air sampling method in 75 homes in central New Jersey, United States. Endotoxin was detected in all homes with median concentrations of 1.0 and 0.55 EU/m(3) for PIPER and stationary sampler, respectively. The difference in median concentrations obtained using the two methods was statistically significant for homes with carpeted floors (P = 0.0001) in the heating season. For such homes, the average ratio of endotoxin concentration measured by PIPER to the stationary sampler was 2.96 (95% CI 2.29-3.63). Fungal spores were detected in all homes, with median fungal concentrations of 316 and 380 spores/m(3) for PIPER and stationary sampler, respectively. For fungi, the difference between the two sampling methods was not statistically significant. For both sampling methods, the total airborne mold levels were statistically significantly higher in the non-heating season than in the heating season. Allergens were detected in ~15% of investigated homes. The data indicate that the traditional stationary air-sampling methods may substantially underestimate personal exposures to endotoxin, especially due to resuspension of dust from carpeted floor surfaces. A personal sampling surrogate, such as PIPER, is a feasible approach to estimate personal exposures in young children. PIPER should be seriously considered as the sampling platform for future exposure studies in young children. PRACTICAL IMPLICATIONS: This study investigated potential indoor bioaerosol exposure of young children using a Pretoddler Inhalable Particulate Environmental Robotic (PIPER) sampler platform. The results show that the traditional stationary air-sampling methods can substantially underestimate personal exposures to resuspended material, and that a personal sampling surrogate, such as PIPER, offers a feasible surrogate for measuring personal inhalation exposures of young children.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号