首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
氮对316L不锈钢焊缝凝固模式和组织的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
采用氮含量不同的三种焊丝分别对316L奥氏体不锈钢进行了TIG焊接,通过金相显微镜和扫描电镜对其焊缝微观组织进行了观察,对比分析了焊缝的凝固模式和焊缝组织的析出行为,研究了氮对焊缝凝固模式和组织的影响.结果表明,焊缝氮含量为0.018%时,焊缝的主要凝固模式为初生相为铁素体的FA模式,δ铁素体以蠕虫状或网状分布于枝晶轴上;氮含量增加到0.088%和0.16%时,焊缝的主要凝固模式转变为初生相为奥氏体的AF模式,δ铁素体以颗粒状分布于初生奥氏体枝晶间,其数目明显减少;焊缝奥氏体组织随着氮含量的增加有明显的粗化趋势.  相似文献   

2.
Two types of low-transformation-temperature weld metals were devised, one associated with primary austenite solidification, the other primary ferrite solidification. The martensite start temperature of both low-transformation-temperature weld metals was about 125°C. Experimental results showed that low-transformation-temperature weld microstructure associated with primary austenite solidification was martensite with 8.0% retained austenite, whereas that one related to primary ferrite solidification primarily consisted of martensite and δ-ferrite. Accordingly, both welded joints had little distinction between distortion and residual stress, indicating that weld metal associated with primary ferrite solidification played the same function as primary austenite solidification on residual stress reduction. Moreover, the low-transformation-temperature weld metal associated with primary ferrite solidification had higher tensile strength and hardness than that based on primary austenite solidification.  相似文献   

3.
Abstract

In order to clarify the effect of solidification velocity on the weld solidification process of alloy tool steel during the welding, the information about microstructure evolution was obtained by the concurrent experiments of liquid tin quenching and time resolved X-ray diffraction technique using intense synchrotron radiation. It was found from the experiments that the solidification mode was transferred from an FA to an A mode at the high solidification velocity. The effect of solidification velocity on the phase selection during solidification between the primary δ-ferrite and γ-austenite was theoretically proved by the Kurz, Giovanola and Trivedi (KGT) model. It is thus explained that the solidification cracking susceptibility of the weld metal of alloy tool steel was enhanced due to the δ to γ transition of the primary phase.  相似文献   

4.
奥氏体不锈钢激光焊接过程中残留液体金属的在线观察   总被引:1,自引:1,他引:0  
激光焊接时较快的冷却速度,有可能促进凝固热裂纹的生成,而凝固热裂纹的生成与凝固温度区间内的残留液体金属行为直接相关.采用由高速摄像机和光学显微镜头组成的摄像装置,针对SUS304,SUS316,SUS310S等3种奥氏体不锈钢激光焊接熔池后端残留液体金属的凝固行为进行高速高倍在线观察,对不同焊接速度下的熔池凝固行为进行了分析,并对3种材料凝固前沿残留液体金属的存在范围进行了量化比较.结果表明,在线观察法可辨别的残留液体金属是固液相共存区间的一部分,在线观察得到的残留液体金属的存在范围与热裂纹试验获得的热裂纹敏感性有较好的对应关系.  相似文献   

5.
The effect of sodium on repair weldability of SUS316FR steel under the remaining sodium environment was investigated by transverse-Varestraint and laser cladding tests. Solidification brittle temperature range (BTR) of SUS316FR steel with AF solidification mode was 37 K. However, BTR was expanded from 37 to 67 K, as the amount of surface-adhered sodium increased from 0 to 7.99 mg/cm2. From microstructural observation of the weld metal, there would be a possibility that metallic sodium existed at cell boundaries in the weld metal during welding solidification. According to the thermodynamic calculation, the sodium would expand the solid–liquid coexistence temperature range. It could be concluded that the enhanced solidification cracking susceptibility under the sodium environment would be attributed to the enlargement of the solid–liquid coexistence temperature range. Finally, it was confirmed that any solidification cracks and blowholes did not occur in the overlaid weld metal through multipass laser cladding tests. Namely, it could be confirmed that SUS316FR steel possessed superior repair weldability under the sodium environment.  相似文献   

6.
ABSTRACT

Metallurgical characteristics of single-mode laser dissimilar welds between super duplex (UNS S32750) and austenitic (type 316L) stainless steels is the existence of an unmixed zone that originates from each base metal. It was confirmed that the unmixed zone that flowed out from the 316L had the microstructural morphology of primary austenite with secondary δ-ferrite solidification mode, while the morphology of a δ-ferrite single phase solidification mode was observed within the unmixed zone that flowed out from the S32750. Furthermore, it could be speculated that each unmixed zone that flowed out from 316L and S32750 coexisted independently in terms of crystallographic aspect (orientation distribution function and predominant orientation relationship) analysed by electron backscatter diffraction.  相似文献   

7.
Peritectic transformation behavior during cooling of iron-carbon alloys is simulated by a numerical analysis. The peritectic transformation, δ+L=γ, is divided into δ-γ transformation at δ/γ interface and L-γ solidification at γ/L interface, and proceeds by the following two mechanisms: (1) carbon diffusion from liquid (referred to as L) through austenite (γ) into δ-ferrite (δ) and (2) precipitation of austenite from δ-ferrite and crystallization of it from liquid due to cooling. Approximately 80% of the austenite formed during the peritectic transformation is the products of δ-y transformation, which may cause the generation of tensile stress in the solidification shell of cast steels due to the difference in density between δ-ferrite and austenite The amount of the δ-γ transformation is largest, when the initial carbon content is 0.17 mass%. However, when the transformation in a well-developed dendrite network structure is focused on, the carbon content for the maximum amount of the δ-γ transformation decreases to 0.14–0.16 mass%, which corresponds to the carbon content at which surface cracking of continuously cast slabs is reported to be most frequent  相似文献   

8.
Metallurgical modeling of synergistic microcrack self-repairmen during welding single crystal and polycrystalline superalloys of high-temperature aerospace materials has been properly established.The idea of improvement of nickel-based superalloys weldability through non-equilibrium solidification behavior of backfill to self-repair arterial crack network is usefully proposed.Crystallographic control strategy of crack self-repairmen of fusion zone interdendritic solidification cracking and heat-affected zone (HAZ) intergranular liquation cracking is technically achievable,indicating that optimal niobium alloying beneficially refines weld microstructure,stabilizes the primary solidification path,increases the solidification temperature and concomitantly decreases the weld pool geometry.High-carbon grain boundary is more thermal stable and less contributes to incipient intergranular liquid film than that of low-carbon grain boundary.The theoretical predictions of cracking susceptibility are indirectly verified in a rather satisfactory manner.Additionally,the metallurgical modeling enhances predicative capabilities and thereby is readily applicable for other alloy systems.  相似文献   

9.
《Acta Materialia》2002,50(19):4763-4781
In situ time-resolved X-ray diffraction (TRXRD) using synchrotron radiation was used to monitor the phase evolution during welding of Fe-C-Al-Mn steel with 0.05 s resolutions. The primary solidification phase under rapid- and slow-cooling rate conditions was examined. The results showed nonequilibrium austenite solidification during rapid cooling; in contrast to the equilibrium δ-ferrite solidification that occurs under slow cooling conditions. These experimental results were analyzed using computational thermodynamics and interface-response function models. Results of the interface response function calculations considering the effect of carbon alone, predicted a change from primary δ-ferrite to primary austenite solidification with an increase in solid-liquid interface velocity.  相似文献   

10.
刘铎  郎波  孙大千  袁世东 《焊接学报》2014,35(5):109-112
为了获得高性能的镁合金电阻点焊接头,利用光学显微镜、扫描电镜、能谱仪研究了点焊接头裂纹的形成机理.结果表明,结晶裂纹的形成,主要与Al和Mn元素偏析造成的晶间低熔点液态薄膜,以及冷却过程中产生的拉伸应力有关.点焊参数(热输入)对熔核结晶裂纹敏感性有很大的影响.热输入增加将增大由熔核收缩引起的拉伸应力,增加原子偏析浓度进而降低液态薄膜熔点,以致于延长拉伸应力的作用时间.因此,应该选择相对低的热输入来降低点焊接头的凝固裂纹敏感性.  相似文献   

11.
L.W. Tsay  S.C. Yu  D.-Y. Lin 《Corrosion Science》2007,49(10):4028-4039
Slow displacement rate tensile tests were carried out to assess the effect of hydrogen embrittlement on notched tensile strength (NTS) and fracture characteristics of AISI 316L and 254 SMO stainless steel (SS) plates and welds. 254 SMO generally exhibited a better resistance to hydrogen embrittlement than 316L. The strain-induced transformation of austenite to martensite in the 316L SS was responsible for the high hydrogen embrittlement susceptibility of the alloy and weld. Sensitized 254 SMO (i.e., heat-treated at 1000 °C/40 min) base plate and weld comprised of dense precipitates along grain boundaries. Interfacial separation along solidified boundaries was observed with the tensile fracture of 254 SMO weld, especially the sensitized one. Dense grain boundary precipitates not only reduced the ductility but also raised the susceptibility to sulfide stress corrosion cracking of the sensitized 254 SMO plate and weld.  相似文献   

12.
In order to clarify the effect of tip velocity on the weld solidification process of hot-work tool steel (SKD61) during welding, information about microstructure evolution was obtained by the combination of a liquid tin quenching and time resolved X-ray diffraction technique using intense synchrotron radiation. From the experimental results, it was found that the solidification mode was changed from FA mode (L → L+δ → L+δ+γ → L+γ → γ) to A mode (L → L+γ → γ) at high tip velocity. Moreover, the effect of tip velocity on the microstructure selection during solidification between the primary δ, ferrite and the primary γ, austenite was theoretically proven by the Kurz, Giovanola and Trivedi model. Therefore, it was understood that the solidification cracking susceptibility of hot-work tool steel (SKD61) weld metal was increased due to the δ to γ transition of the primary phase.  相似文献   

13.
Solidification cracking susceptibilities of two types of superaustenitic stainless steel, 254SMO and SR50A, were evaluated by transverse Varestraint tests. The susceptibilities were compared with those of conventional austenitic stainless steel 316L, and factors influencing the difference of susceptibility were discussed. The comparison showed that 254SMO and SR50A are more sensitive to solidification cracking than 316L. In the transverse Varestraint tests, both total and maximum crack lengths are longer in the superaustenitic stainless steel. Because of the longer maximum crack length, the superaustenitic stainless steel also has a wider brittleness temperature range of cracking than 316L: about 178 °C for the superaustenitic stainless steel and 43 °C for 316L. It is believed that straight subgrain boundaries owing to the cellular dendritic solidification and segregations of sulfur and phosphorus in the subgrain boundaries of superaustenitic stainless steel make it more sensitive to solidification cracking. In addition to the solidification cracking, reheat cracking is also observed within the previous weld bead in the superaustenitic stainless steel because of fully austenitic solidification with significant segregations. This suggests that caution should be given to the occurrence of reheat cracking when superaustenitic stainless steel is multi pass welded.  相似文献   

14.
Abstract

The effect of addition of La to a filler metal on microcracking (ductility dip cracking) in the multipass weld metal of alloy 690 was investigated with the aim of improving its microcracking susceptibility. The susceptibility to ductility dip cracking in the reheated weld metal could be greatly improved by adding 0·01–0·02 wt-%La to the weld metal. Conversely, excessive La addition to the weld metal led to liquation and solidification cracking in the weld metal. Hot ductility of the weld metal at the cracking temperature was greatly improved by adding 0·01–0·02 wt-%La to the weld metal, implying that the ductility dip cracking susceptibility was decreased as a result of the desegregation of impurity elements of P and S to grain boundaries due to the scavenging effect of La. The liquation and solidification cracking resulting from excessive addition of La to the weld metal is attributed to the formation of liquefiable Ni–La intermetallic compound. A multipass welding test confirmed that microcracks in the multipass weldment were completely prevented by using a filler metal containing an addition of 0·01 wt-%La.  相似文献   

15.
利用光学显微镜、扫描电镜和透射电镜研究了C-1.5Mn-2.5Ni-0.5Cr-0.5Mo合金系焊缝金属的微观组织,并通过Thermal-calc软件计算焊缝金属Fe-Ni相图,进而研究了焊缝金属从液相凝固到室温组织整个相变过程。此外还测试了焊缝金属的基本力学性能。研究表明:液态金属初生相为δ-铁素体,并以柱状方式生长,形成δ-铁素体柱状晶。温度下降,δ-铁素体开始向奥氏体转变,奥氏体晶粒也以柱状方式生长,形成柱状奥氏体晶粒。温度继续下降,在奥氏体晶界处最先发生相变形成贝氏体,而奥氏体内部最后发生相变转变成马氏体。原奥氏体晶界形核以及贝氏体侧向形核导致贝氏体呈交织状分布。焊缝金属具有良好的低温韧性,这是因为组织中含有大量交织状贝氏体。  相似文献   

16.
Two types of 316 butt welds with carbon contents of 0.016% and 0.062% have been produced using the gas tungsten arc welding process.The δ-ferrite content decreased from 7.2 to 2.8% in volume as the carbon content increased.The creeprupture strength and creep ductility of the two types of weld metals have been measured at 550℃ over the stress range of 290-316 MPa and at 600℃ over 230-265 MPa.The microstructure change and precipitation behavior of the weld metals were observed and related to the creep rupture properties.The creep rupture strength of the C2(0.062% C) weld metal was higher than that of the Cl(0.016% C) weld metal at both 550 ℃ and 600 ℃.At 550℃,as the decrease in the applied stress,the difference of the creep-rupture life between the two weld metals diminished due to the higher depletion rate of carbon by precipitation of M_(23)C_6 in the C2 weld metal,while at 600℃,the difference enlarged due to the massive precipitation ofσ phase and extensive crack formation and propagation along σ/austenite boundaries in the C1 weld metal.For both the C1 and C2 weld metal,the decrease in ductility was adverse with the transformation percentage and related to products of theδ-ferrite transformation.  相似文献   

17.
铝合金焊接凝固裂纹高温动态开裂行为   总被引:1,自引:0,他引:1       下载免费PDF全文
详细研究了5083、6082、ZL101三种铝合金的凝固金相组织,观察和记录了三种材料高温拉伸开裂动态过程及开裂后的断口特征。结果表明,材料的冶金因素制约着凝固裂纹的动态开裂行为,即材料的冶金特性不同,它们的凝固裂纹开裂模型也不同。文中由此总结了凝固裂纹的三种开裂模型。第一,裂纹形成时存在“愈合作用”,ZL101属于此列。第二,裂纹形成时伴随着金属桥的变形与断裂,如5083材料。第三。裂纹形成时晶粒是沿液膜分离。如6082。  相似文献   

18.
薄春雨  杨玉亭  李向阳  周世峰 《焊接》2006,(6):41-45,60
采用横向可调拘束方法,研究了典型合金元素Nb对690镍合金带极堆焊金属结晶裂纹的影响.试验结果表明:随着Nb含量的增加,690堆焊金属的开裂临界应变量减小,最大裂纹长度增大,临界应变速率下降,结晶裂纹敏感性增大.金相分析表明,随Nb含量的增加,奥氏体晶界变宽,晶界富Nb第二相数量增多,在Nb含量大于2.0%的材料中,第二相的晶界偏聚甚至诱发了二次裂纹.  相似文献   

19.
This research evaluates the effects of Si, N and REM on the hot cracking behavior of specially designed austenitic stainless steels. Varestraint hot cracking tests and microstructural examination revealed that solidification cracking of 304 can be minimized by a suitable addition of Si, N and control of the solidification mode. Further, the addition of N to “fully” austenitic 316 weld metal decreased solidification cracking susceptibility. REM additions were also effective in reducing solidification and weld metal HAZ liquation cracking in 347, but was ineffective for reduction in base metal HAZ liquation cracking.  相似文献   

20.
镍基合金焊丝GTAW熔敷金属凝固偏析行为   总被引:1,自引:1,他引:0       下载免费PDF全文
郭枭  徐锴  霍树斌  陈佩寅  陈波 《焊接学报》2019,40(7):105-108
采用OM,SEM,EDS,EPMA等分析手段对试制的镍基合金焊丝GTAW熔敷金属开展了凝固偏析行为研究.结果表明,熔敷金属中主要包括γ相、(Nb,Ti) C碳化物、Laves相等,金相组织主要为柱状晶,在枝晶间存在宽度约为5~10 μm的偏析区域;按照Scheil公式对EPMA分析结果进行了偏析系数计算,估算的Nb,Mo,Ni,Cr,Fe偏析系数分别为kNb=0.23,kMo=0.68,kNi=1.07,kCr=1.05,kFe=1.23,在结晶过程中Nb,Mo更倾向于分配在残余液相,Nb的偏析倾向最大,Mo次之,Fe更倾向于分配在固相中,Ni,Cr基本为固液平均分配.文中试验用镍基合金焊丝GTAW熔敷金属凝固结晶路径为L→L+γ→L+γ+MC→L+γ+MC+Laves相→γ+MC+Laves相.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号