首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, an adaptive fuzzy backstepping robust control approach is proposed for a class of SISO nonlinear strict‐feedback systems. The nonlinear systems addressed in this paper are assumed to possess three uncertainties: (i) the unstructured uncertainties; (ii) the time delays; and (iii) the dynamics uncertainties. In adaptive backstepping recursive design, fuzzy logic systems are used to approximate the unstructured uncertainties. A nonlinear damping technique and Lyapunov–Krasovskii functions are introduced to cancel the effects of the dynamics uncertainties and deal with the time delays, respectively. Combining the backstepping technique and a small gain approach, a stable adaptive fuzzy robust control approach is developed. It is proved that all the signals of the closed‐loop system are semi‐golablly uniformaly ultimately bounded (SUUB). The effectiveness of the proposed approach is illustrated by a simulation example.  相似文献   

2.
In this paper, a direct fuzzy adaptive robust control approach is proposed for a class of SISO nonlinear systems with completely unknown virtual control directions, unknown nonlinearities, unmodeled dynamics and dynamic disturbances. In the backstepping recursive design, fuzzy logic systems are employed to approximate the combined nonlinear uncertainties, a dynamic signal and Nussbaum gain technique are introduced into the control scheme to dominate the dynamic uncertainties and solve the unknown signs of virtual control directions, respectively. It is proved that the proposed robust fuzzy adaptive scheme can guarantee the all signals in the closed-loop system are semi-globally uniformly ultimately bounded. The effectiveness of the proposed approach is illustrated via three examples.  相似文献   

3.
In this paper, an adaptive fuzzy output feedback control approach based on backstepping design is proposed for a class of SISO strict feedback nonlinear systems with unmeasured states, nonlinear uncertainties, unmodeled dynamics, and dynamical disturbances. Fuzzy logic systems are employed to approximate the nonlinear uncertainties, and an adaptive fuzzy state observer is designed for the states estimation. By combining backstepping technique with the fuzzy adaptive control approach, a stable adaptive fuzzy...  相似文献   

4.
动态不确定非线性系统直接自适应模糊backstepping控制   总被引:3,自引:0,他引:3  
对一类单输入单输出动态不确定非线性系统,提出一种直接自适应模糊backstepping和小增益相结合的控制方法.设计中,首先用模糊逻辑系统逼近虚拟控制器:其次把自适应模糊控制和backstepping控制设计技术相结合.给出了直接自适应模糊控制设计方法.最后基于Lyapunov函数和小增益方法证明了整个闭环系统的稳定性.仿真实例进一步验证了所提方法的有效性.  相似文献   

5.
In this paper, an adaptive fuzzy robust feedback control approach is proposed for a class of single-input and single-output (SISO) strict-feedback nonlinear systems with unknown nonlinear functions, time delays, unknown high-frequency gain sign, and without the measurements of the states. In the backstepping recursive design, fuzzy logic systems are employed to approximate the unknown smooth nonlinear functions, K-filters is designed to estimate the unmeasured states, and Nussbaum gain functions are introduced to solve the problem of unknown sign of high-frequency gain. By combining adaptive fuzzy control theory and adaptive backstepping design, a stable adaptive fuzzy output feedback control scheme is developed. It has been proven that the proposed adaptive fuzzy robust control approach can guarantee that all the signals of the closed-loop system are uniformly ultimately bounded and the tracking error can converge to a small neighborhood of the origin by appropriately choosing design parameters. Simulation results have shown the effectiveness of the proposed method.  相似文献   

6.
In this paper, an adaptive fuzzy output feedback control approach is proposed for single-input-single-output nonlinear systems without the measurements of the states. The nonlinear systems addressed in this paper are assumed to possess unmodeled dynamics in the presence of unstructured uncertainties and dynamic disturbances, where the unstructured uncertainties are not linearly parameterized, and no prior knowledge of their bounds are available. Fuzzy logic systems are used to approximate the unstructured uncertainties, and a state observer is developed to estimate the unmeasured states. By combining the backstepping technique with the small-gain approach, a stable adaptive fuzzy output feedback control method is proposed. It is shown that by applying the proposed adaptive fuzzy control approach, the closed-loop systems are semiglobally uniformly ultimately bounded. The effectiveness of the proposed approach is illustrated from simulation results.  相似文献   

7.
In this paper, a robust adaptive neural network (NN) backstepping output feedback control approach is proposed for a class of uncertain stochastic nonlinear systems with unknown nonlinear functions, unmodeled dynamics, dynamical uncertainties and without requiring the measurements of the states. The NNs are used to approximate the unknown nonlinear functions, and a filter observer is designed for estimating the unmeasured states. To solve the problem of the dynamical uncertainties, the changing supply function is incorporated into the backstepping recursive design technique, and a new robust adaptive NN output feedback control approach is constructed. It is mathematically proved that the proposed control approach can guarantee that all the signals of the resulting closed-loop system are semi-globally uniformly ultimately bounded in probability, and the observer errors and the output of the system converge to a small neighborhood of the origin by choosing design parameters appropriately. The simulation example and comparison results further justify the effectiveness of the proposed approach.  相似文献   

8.
In this paper, a fuzzy adaptive backstepping design procedure is proposed for a class of nonlinear systems with three types of uncertainties: (i) nonlinear uncertainties; (ii) unmodeled dynamics and (iii) dynamic disturbances. The fuzzy logic systems are used to approximate the nonlinear uncertainties, nonlinear damping terms are used to counteract the dynamic disturbances and fuzzy approximation errors, and a dynamic signal is introduced to dominate the unmodeled dynamics. The derived fuzzy adaptive control approach guarantees the global boundedness property for all the signals and states, and at the same time, steers the output to a small neighborhood of the origin. Simulation studies are included to illustrate the effectiveness of the proposed approach.  相似文献   

9.
This paper deals with the robust adaptive control of a class of nonlinear systems in the presence of parametric uncertainties and dominant uncertain nonlinearities. The proposed controller utilizes the robust adaptive control to guarantee uniform boundedness and convergence of tracking errors. In addition, an adaptive fuzzy logic system is used as a universal approximator to reduce the model uncertainties coming from uncertain nonlinearities and to improve tracking performance. The approach does not require the matching condition imposed on control systems by using the backstepping design procedure, and provides boundedness of tracking errors under poor parameter adaptation. The method can be applied to a class of single-input single-output (SISO) nonlinear systems, transformable to a parametric-strict-feedback form  相似文献   

10.
In this paper, a robust adaptive tracking control problem is discussed for a general class of strict-feedback uncertain nonlinear systems. The systems may possess a wide class of uncertainties referred to as unstructured uncertainties, which are not linearly parameterized and do not have any prior knowledge of the bounding functions. The Takagi-Sugeno type fuzzy logic systems are used to approximate the uncertainties. A unified and systematic procedure is employed to derive two kinds of novel robust adaptive tracking controllers by use of the input-to-state stability (ISS) and by combining the backstepping technique and generalized small gain approach. One is the robust adaptive fuzzy tracking controller (RAFTC) for the system without input gain uncertainty. The other is the robust adaptive fuzzy sliding tracking controller (RAFSTC) for the system with input gain uncertainty. Both algorithms have two advantages, those are, semi-global uniform ultimate boundedness of adaptive control system in the presence of unstructured uncertainties and the adaptive mechanism with minimal learning parameterizations. Four application examples, including a pendulum system with motor, a one-link robot, a ship roll stabilization with actuator and a single-link manipulator with flexible joint, are used to demonstrate the effectiveness and performance of proposed schemes.  相似文献   

11.
The problem of robust output tracking for a class of uncertain nonlinear systems which do not satisfy the conventional matching condition is considered. The main assumption on the uncertainty is that the triangularity condition is satisfied. Based on backstepping method and input/output linearization approach, we propose a class of non-adaptive state feedback controllers which can guarantee exponential stability of the tracking error for the uncertain nonlinear systems first. Next, adaptive control laws are developed so that no prior knowledge of the bounds on the uncertainties is required. By updating these upper bounds, we design a class of adaptive robust controllers. It is shown that under the proposed adaptive robust control the tracking error of the controlled system converges to zero as time approaches infinity.  相似文献   

12.
In this paper, an adaptive fuzzy decentralized backstepping output feedback control approach is proposed for a class of uncertain large‐scale stochastic nonlinear systems without the measurements of the states. The fuzzy logic systems are used to approximate the unknown nonlinear functions, and a fuzzy state observer is designed for estimating the unmeasured states. Using the designed fuzzy state observer, and by combining the adaptive backstepping technique with dynamic surface control technique, an adaptive fuzzy decentralized output feedback control approach is developed. It is shown that the proposed control approach can guarantee that all the signals of the resulting closed‐loop system are semi‐globally uniformly ultimately bounded in probability, and the observer errors and the output of the system converge to a small neighborhood of the origin by choosing appropriate design parameters. A simulation example is provided to show the effectiveness of the proposed approaches. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
基于后推设计的直接自适应模糊控制   总被引:5,自引:0,他引:5  
针对一类严格反馈不确定非线性动态系统,提出一种直接鲁棒自适应模糊控制新方案.利用模糊系统的逼近能力、后推设计方法和积分型李亚普诺夫函数,依次确定各虚拟控制及模糊系统中可调参数的自适应律,并最终确定出控制律.为改善控制系统的性能,引入逼近误差的自适应补偿项.通过李亚普诺夫方法,证明了闭环系统是一致终结有界的.仿真结果表明了该方法的有效性。  相似文献   

14.
In this paper, an adaptive fuzzy output feedback control approach is developed for a class of SISO nonlinear uncertain systems with unmeasured states and unknown virtual control coefficients. The fuzzy logic systems are used to model the uncertain nonlinear systems. The MT-filters and the state observer are designed to estimate the unmeasured states. Using backstepping design principle and combining the Nussbaum gain functions, an adaptive fuzzy output feedback control scheme is developed. It is proved that the proposed adaptive fuzzy control approach can guarantee all the signals in the closed-loop system are semi-globally uniformly ultimately bounded and the tracking error converges to a small neighborhood of origin. A simulation is included to illustrate the effectiveness of the proposed approach.  相似文献   

15.
In this paper, a new fuzzy adaptive control approach is developed for a class of SISO strict-feedback nonlinear systems, in which the nonlinear functions are unknown and the states are not available for feedback. By fuzzy logic systems to approximate the unknown nonlinear functions, a fuzzy adaptive high-gain observer is designed to estimate the unmeasured states. Under the framework of the backstepping design, fuzzy adaptive output feedback control is constructed recursively. It is shown that the proposed fuzzy adaptive control approach guarantees the semi-global boundedness property for all the signals of the resulting closed-loop system. Simulation results are included to illustrate the effectiveness of the proposed techniques.  相似文献   

16.
This paper presents a direct adaptive fuzzy backstepping control (AFBC) for multi-input multi-output uncertain discrete-time nonlinear systems. It is assumed that the systems are described by a discrete-time state equation with uncertainties to be viewed as the modelling errors and the unknown external disturbances, and the observation of the states is taken with independent measurement noises. The proposed direct AFBC is presented as follows. The proposed direct AFBC is assumed to be the fuzzy logic system by removing the explosion of complexity problem due to repeated computation of nonlinear functions at the first stage. Second, the number of the adjustable parameters is reduced by the fuzzy inference approach based on the extended single input rule modules. Third, the simplified weighted least squares estimator is constructed by reducing the computational burden of the estimation for the unmeasurable states and the adjustable parameters. The effectiveness of the proposed direct AFBC is illustrated through the simulation experiment of a simple numerical system.  相似文献   

17.
Dynamics of an unmanned surface vehicle (USV) is usually hard to be modeled accurately due to system uncertainties and disturbances, which can significantly reduce system control performance. To guarantee a satisfied control performance under modeling uncertainties and disturbances, a novel control scheme combining adaptive fuzzy output regulation control and prescribed performance control is proposed in this paper. The unknown nonlinear dynamics of the USV is firstly approximated by a fuzzy logic system, and then an adaptive output regulation control law is developed using backstepping approach for the USV to track a reference system while rejecting disturbances and approximation errors induced by the fuzzy logic system. Meanwhile, the prescribed performance control technique is combined to the adaptive output regulation control design to reach a desired control performance in spite of the unknown system dynamics and disturbances. A simulation study is finally provided to demonstrate the effectiveness of the proposed approach.  相似文献   

18.
针对不确定严格反馈块控非线性系统, 提出了一种基于反步法的鲁棒自适应终端滑模变结构控制方法. 系统的未知不确定及外界干扰由模糊系统在线逼近, 利用反步法设计了变结构控制的终端滑模面, 并由此得到了鲁棒自适应终端滑模控制器, 使系统的跟踪误差在有限时间内趋于给定轨迹的任意小的邻域内. 通过Lyapunov定理证明了闭环系统所有信号最终有界. 对某战斗机6自由度机动仿真结果表明, 该方法具有强鲁棒性.  相似文献   

19.
Direct adaptive fuzzy control of nonlinear strict-feedback systems   总被引:8,自引:0,他引:8  
This paper focuses on adaptive fuzzy tracking control for a class of uncertain single-input /single-output nonlinear strict-feedback systems. Fuzzy logic systems are directly used to approximate unknown and desired control signals and a novel direct adaptive fuzzy tracking controller is constructed via backstepping. The proposed adaptive fuzzy controller guarantees that the output of the closed-loop system converges to a small neighborhood of the reference signal and all the signals in the closed-loop system remain bounded. A main advantage of the proposed controller is that it contains only one adaptive parameter that needs to be updated online. Finally, an example is used to show the effectiveness of the proposed approach.  相似文献   

20.
A robust adaptive fuzzy control approach is developed for a class of multi-input-multi-output (MIMO) nonlinear systems with modeling uncertainties and external disturbances by using both the approximation property of the fuzzy logic systems and the backstepping technique. The MIMO systems are composed of interconnected subsystems in the strict-feedback form. The main characteristics of the developed approach are that the online computation burden is alleviated and the robustness to dynamic uncertainties and external disturbances is improved. It is proven that all the signals of the resulting closed-loop system are uniformly bounded and that the tracking errors converge to a small neighborhood around zero. Two simulation experiments are presented to demonstrate the feasibility of the approach developed in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号