共查询到16条相似文献,搜索用时 49 毫秒
1.
2MW加压喷动流化床煤部分气化特性的研究 总被引:1,自引:0,他引:1
在热输入2MW的中试规模加压喷动流化床部分气化试验装置上,采用徐州煤烟进行了连续12h的加压部分气化试验研究,研究了在深床条件下煤部分气化特性,以及汽煤比的变化对部分气化的影响。研究结果表明:在合适的喷动风和流化风配比下,可实现深床气化,使气化反应基本达到化学平衡;在其它条件不变的前提下,汽煤比增加,气化炉温度下降,煤气中H2含量有较大幅度的提高,煤气热值也有所增加。文章的最后将试验的主要指标与国内外类似规模装置上获得的数据进行了比较。图6表5参10 相似文献
2.
3.
4.
5.
6.
在内径100 mm的有机玻璃冷模装置上进行了加压喷动流化床试验.床料直径为1.6 mm、2.3 mm的小米.研究了压力、静止床高及流化风对最小喷动速度的影响.试验结果表明:喷动流化床的最小喷动速度随压力的增大而减小,但减小幅度逐渐变小;静止床高增大,最小喷动速度增大,但床高的增加对最小喷动速度的影响随着压力的增大而减弱.流化风风量增加导致最小喷动速度降低.根据试验数据进行了线性回归,分别得出了uf=0和uf>0(uf为流化风床内表观气速)时最小喷动速度的关联式,相关系数分别为0.964和0.920,关联式和试验值吻合较好. 相似文献
7.
8.
借助CFD(Computational fluid dynamics)软件平台首次建立了三维喷动流化床气化动力学模型.此模型包含了以下子模型:气固流动模型,煤的挥发分析出模型,焦炭气化反应模型,气相间的均相反应模型.此模型重点考察了操作压力的变化对煤气化的影响.当压力为0.1MPa时,一氧化碳,氢气,甲烷的摩尔分数分别为8.75%,10.5%,3%,压力为0.3Mpa时,一氧化碳,氢气,甲烷的摩尔分数分别为11.2%,12.81%,4.27%.煤气质量在加压后有了明显的提高,并通过试验结果进行了验证. 相似文献
9.
10.
为了研究空煤比对煤气化多环芳烃排放的影响,在一台小型常压流化床气化炉上进行了煤部分气化实验.经索氏萃取、K-D浓缩和硅胶层析纯化后,采用带荧光检测器和二极管矩阵检测器的高效液相色谱仪对半焦和煤气中16种多环芳烃进行了测定.实验结果表明,煤气中多环芳烃以低环和中环为主,半焦中多环芳烃以中环和高环为主;煤气和半焦中多环芳烃毒性当量质量浓度均集中在5环多环芳烃上,尤其是苯并(a)芘(BaP)和二苯并(a,h)荧蒽(DbA);当空煤比由2.25 m3/kg增加到3.83 m3/kg时,煤气和半焦中多环芳烃质量浓度和毒性当量质量浓度呈现出先增后减的变化趋势. 相似文献
11.
在热输入为1 MW增压流化床燃烧中试试验装置上,对加压煤部分气化得到的气化半焦进行了加压燃烧试验研究。试验结果表明,煤气化半焦增压流化床燃烧中试装置的各分系统设计合理,全系统能协调、稳定运行。在燃烧室压力0.5 MPa,燃烧温度900℃,过剩空气系数1.2~1.3,流化速度1.1~1.2 m/s条件下,半焦的燃烧效率达到99%以上,飞灰含碳量在2%以下;此外,还发现适当提高半焦燃烧的床温和一个适宜的空气过剩系数有利于半焦的充分、稳定燃烧,而飞灰循环对提高半焦燃烧效率非常有益。 相似文献
12.
在一台小型流化床部分煤气化气化炉上,以空气和水蒸气为气化剂,在不同操作条件下(给煤量、流化风量和蒸气量),进行了三种不同煤种的气化实验。研究结果表明,床温随给煤量和蒸汽量的增加以及流化风量的减小而降低;在一定范围内。煤气中CO含量随给煤量、流化风量和蒸汽量的增加以及煤化程度的降低而升高;煤气中H2含量随给煤量和煤化程度的升高以及流化风量和蒸汽量的减小而降低;CH4含量随给煤量的增加而增加,随流化风量、蒸汽量和煤化程度的升高而降低。另外,煤化程度升高,生成煤气的热值减小。 相似文献
13.
为了探索大型加压流化床煤气化的最佳操作条件和设计参数,建立了针对加压流化床气化方式的计算模型,包括颗粒模型、气相模型、气泡模型和焓平衡模型,分析了单位给煤量、氧量和水蒸气等操作参数对碳转化率、产气量和冷煤气效率等参数的影响,并确定了给煤量的最佳操作范围.结果表明:初期碳转化率均保持在99%以上,对于相同床面积的气化炉,可通过提高反应压力来提高气化炉处理量;反应压力由1.5MPa提高到2.1MPa时(提高40%),单位煤产气量可增加34%以上;反应压力为2.1 MPa时,给煤量的最佳操作范围为2.0~2.5kg/(m2·s);氧煤比为0.6~0.7时,冷煤气效率可达到77%;生成气体的热值与水蒸气比成正比. 相似文献
14.
建立了一套能同时实现高温高压和快速加热的实验设备和研究方法,使煤气化反应动力学基础研究能在与实际气流床煤气化炉相近的条件下进行.研究表明,当CO2体积分数相同时,最大CO生成速度随压力的升高而升高;煤焦的气化反应速度随全压的升高而升高.即使全压和CO2体积分数不同,只要CO2的分压、温度等其他条件相同,煤焦的气化反应速度就基本上一致.说明全压和CO2体积分数对煤焦气化反应速度的影响可以归纳为CO2分压的影响.高温快速加热条件下,除了温度以外,CO2分压是影响煤气化特性的重要因素. 相似文献
15.