首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
采用25 t EAF-VOD+LF-680 kg铸锭工艺冶炼0. 14%C-0.35%N 的奥氏体不锈钢1Mn15Cr17Ni2N。VOD精炼后,[N]为0.040%,[0]为0.0158%;通过LF吹氮45 min,吹氮量50 m³,分析得出[N]为0.139%, [O]为0.0033%,吹入氮气平均回收率为33.07%。再加人500 kg氮化铬(8.60%N)和150 kg氮化锰(5.13%N),取样分析[N]为0.35%, [O]为0.0029%,加氮化铬和氮化锰的氮综合回收率为87.41%。  相似文献   

2.
真空感应炉充氩冶炼高氮Cr-Mn-Mo-Cu奥氏体不锈钢   总被引:2,自引:2,他引:2  
用 2 5kg真空感应炉在Ar气压力 (0 4 0~ 0 4 5 )× 10 5Pa下进行成分 (% )为 0 0 10~ 0 0 4 7C ,16 0 4~ 19 72Cr,6 39~ 15 31Mn ,1 83~ 3 2 9Mo ,0 2 5~ 1 4 4Cu ,0 2 4~ 0 4 6N的奥氏体不锈钢的熔炼试验 ,研究炉内压力、合金成分、添加氮化物类型和熔化停留时间对钢中氮含量和氮的回收率的影响。试验结果表明 ,加入氮化锰的增氮效果和氮的回收率均优于粒状氮化铬和氮化铬 氮化锰的混合物 ;随钢中合金元素的增加 ,氮的活度系数降低 ,钢中氮含量和氮的回收率明显提高。  相似文献   

3.
针对生产GX12CrMoWVNbN10-1-1钢时氮收得率低的情况,对氮的合金化工艺进行优化。3种充氮合金化工艺的对比结果表明:真空前加氮化铬合金,真空时用氮气代替氩气的氮合金化工艺效果最好,能在不影响产品质量的情况下使氮化铬中氮收得率从15.40%提高到25.43%。  相似文献   

4.
分析了真空度、温度和氮化物成分对钢中氮溶解度影响,并在50 k真空感应炉对不同化学成分的合金钢(/%:0.06~0.36C、≤3.23Si、≤2.20Al、≤9.00Cr)进行3种氮化物-氮化硅、氮化锰和氮化铬的增氮试验。结果表明,气相中氮气分压对钢液中氮溶解度影响最大;钢中Ti、Cr提高氮溶解度和氮化物的收得率;增加C含量则降低氮溶解度和氮化物的收得率;钢中含有一定量的铝,可以显著提高氮化物的收得率。40 kPa氩气压力,1 600~1 650℃时在硅钢、结构钢和9%Cr钢中氮化硅、氮化锰、氮化铬的收得率分别为25%~30%、30%~50%、60%~100%。  相似文献   

5.
试验用1Cr17Mn6Ni5N钢(/%:0.09~0.11C,0.19~0.29Si,7.33~7.42Mn,0.011~0.015P,0.004~0.007S,16.87~17.24Cr,,5.06~5.19Ni,0.21~0.40N)由10kg真空感应炉熔炼,通过氮气气氛加氮化铬进行N合金化。通过Gleeble-1500D热模拟试验机将实验钢在真空下1150~1 000℃,以应变速率10-2s-1和1 s-1进行压缩60%试验。结果表明,在高温下,以低应变速率压缩时钢的动态再结晶是主要的软化机制;以高应变速率压缩时钢的动态回复是主要的软化机制;与0.21%N和0.29%N试验钢相比,含0.40%N的试验钢具有较高的峰值应力,根据Zener-Hollomon参数的计算得出0.40%N的试验钢再结晶激活能最高,在高温下不易发生动态再结晶。  相似文献   

6.
真空感应炉近常压气氛保护熔炼高氮马氏体不锈钢   总被引:1,自引:0,他引:1  
研究了在真空感应炉近常压气氛保护熔炼条件下氮在马氏体不锈钢0Cr16Ni5Mo中的溶解度,探讨了炉内保护气体种类、氮化铬铁加入量对钢中氮含量的影响.结果表明,炉内保护气体种类对钢中氮的溶解度有较大影响,氮化铬铁合金加入量对钢氮含量的影响因保护气体种类不同而异.  相似文献   

7.
杨吉春  刘南 《特殊钢》2011,32(4):50-52
Cr12N合金(%:2.03~2.26C、0.16~0.33Si、0.29~0.37Mn、11.86~11.96Cr、0.09~0.28N)由10kg真空感应炉熔炼并通过充氮和加氮化硅进行N合金化。通过Gleeble-1500热模拟试验机将不同N含量的Cr12N合金在真空下以10℃/s加热至1180℃3min,再以10℃/s冷却至1100~900℃20s,以1~102s-1进行30%压缩变形,得出真应力-应变曲线和氮对该合金高温力学性能的影响。结果表明,N抑制合金动态再结晶发生,Cr12N合金在高温变形时,动态回复是最主要的软化机制;与0.09%N合金和0.28%N合金比较,0.18%N合金具有较高的峰值应力和屈服应力,回复激活能最低。  相似文献   

8.
AOD冶炼不锈钢氮合金化控制模型的研究和应用   总被引:1,自引:0,他引:1  
根据氮在钢中的溶解热力学和脱除动力学理论,建立了AOD精炼氮合金化的控制模型。经45 t AOD装置精炼0Cr19Ni9N不锈钢(%:≤0.08C、18~20Cr、8~11Ni、0.10~0.16N)的应用结果表明,模型计算值与实测值吻合良好,可通过AOD氮气溶解和氩气脱除,精确控制不锈钢的N含量。  相似文献   

9.
本发明采用的钒氮合金的生产方法是,将粉末状的钒的氧化物或偏钒酸铵,碳质粉剂和粘结剂等混合均匀后压块、成型,在氮气气氛下连续加入外热式回转窑,在氮气保护下预烧到1000℃以下,在出料口收集经氮气保护下冷却至室温的预烧的块状产品。然后推入改进的软磁氮气氛炉窑中,加热到1000~1500℃,物料发生碳化和氮化反应,出炉后获得钒氮合金产品。本发明制得的钒氮合金:  相似文献   

10.
范新智  邹勇 《太钢科技》2004,(4):14-15,56
本文论述了在连铸0Cr18Ni9钢以氮代氩保护浇注的试验情况。试验结果为:氮气保护浇注和氩气保护浇注效果相当,钢水氧含量分别为55ppm和54ppm,增氮量平均为11ppm。结果表明,采用氮气达到了与氩气相当的无氧化保护效果,并可节约成本。  相似文献   

11.
胡伟星 《特殊钢》2016,37(4):64-68
在25 kg真空感应炉充氩气或大气下加氮化铬铁熔炼成不同氮含量的试验用1~2Cr13Mn9Ni4钢(/%:0.08~0.18C,0.17~0.34Si,8.11~9.27Mn,0.008~0.028P,0.007~0.032S,12.57~13.34Cr,4.05~4.65Ni,0~0.34N)。该钢经锻造、热轧成0.8 mm钢带,再进行0~45%的冷轧变形。试验研究了冷轧变形量和氮含量对该钢组织,力学性能和耐蚀性的影响。结果表明,通过降碳和加适量氮可改善Cr13Mn9Ni4钢的强度和塑性;冷变形钢在敏化状态下均有不同程度的晶间腐蚀倾向;氮有利于提高亚稳奥氏体不锈钢相组成的稳定性;氮使不含稳定化元素的亚稳奥氏体不锈钢在SO42-介质中易于钝化,提高了在非敏化状态下的耐腐蚀性,同时明显提高了在Cl-介质中耐点蚀性能。  相似文献   

12.
陈海涛  罗毅军 《特殊钢》2013,34(6):56-58
试验用316LN钢(/%:0.015C、0.65Si、0.90Mn、17.3Cr、12.8 Ni、2.6Mo、0.018~0.200N)由50 kg真空感应炉冶炼,破真空后加入氮化铬铁,铸锭锻成Φ20 mm棒材和热轧成4 mm板材,并分别经1 100℃30 min和10min水淬固溶处理。研究结果表明,316LN不锈钢每增加0.010%的氮,抗拉强度提高9 MPa,屈服强度提高7 MPa;伸长率降低0.55%,氮含量对断面收缩率没有影响,约保持在72.5%;氮强烈提高316LN不锈钢的耐点腐蚀性能,每增加0.010%的氮,其点蚀击穿电位提高7 mV;添加适宜的氮(0.079%N),可以改善316LN不锈钢的耐晶间腐蚀性能,过高的氮含量(超过0.120%N)对晶间腐蚀性能有害。  相似文献   

13.
杨吉春  刘南 《特殊钢》2011,32(3):68-70
实验用钢GCr15(%:0.97~1.03C、1.43~1.59Cr)用10 kg真空感应炉熔炼,在充氩情况下,使用氮化硅向钢中加0.1%~0.3%氮。通过Gleeble-1500热模拟试验机对该钢的锻材在700~1150℃进行拉伸试验,并用光学显微镜、扫描电子显微镜观察断口形貌和纵向组织。结果表明,氮在钢中以固溶形式存在,随氮含量增加,高温下钢的断面收缩率有较大提升,峰值应力提升不明显。  相似文献   

14.
范新智 《特殊钢》2014,35(3):27-28
冶炼高氮不锈钢10Cr21Mnl6NiN (/%:0.03~0.13C,0.30~0.60Si,15.0~17.0Mn, ≤0.045P, ≤0.030S,21.0~22.0Cr,1.0~1.8Ni,0.40~0.65N) EAF粗炼钢水主要成分为2.20%C,21.32%Cr。AOD精炼时,采用顶吹和底侧吹氧氮进行脱碳,加入锰铁和镍铁,并加入石灰脱硫,用硅铁还原后再用铝和硅钙粉进行深脱氧;使用金属锰进行锰合金化后钢中Mn含量达16%;在钢水量为45.2~46.0 t时,AOD出钢时钢中氮含量为0.49%~0.54%,在出钢过程加入1.34~1.67 t氮化锰后钢中氮含量为0.64%~0.65%,氮的收得率可达42.1%~50.2%。  相似文献   

15.
王海兵 《特殊钢》2005,26(6):59-60
攀成钢公司采用92 t EBT(偏心底)UHP EAF-LF(钢包炉)工艺冶炼成分(%)为0.17~0.23C-≤0.15Mo的高压锅炉钢20G。操作实践表明,在EAF(电弧炉)炉料中配加35%的生铁,并通过添加3~10 mm的碳粒和强化供氧,形成500~750 mm的泡沫渣,以利去除钢液中的部分氮,使EAF出钢时钢中氮含量平均达到45×10-6。LF精炼时采用大渣量埋弧操作,氩气弱搅拌和缩短加热时间,以便控制精炼时钢液增氮量不超过10×10-6,并使LF精炼后钢中氮含量达(60~66)×10-6,有效地防止钢材产生时效脆性。  相似文献   

16.
AOD精炼高氮奥氏体不锈钢1Cr22Mn15N的工艺实践   总被引:3,自引:1,他引:2  
用 20 t AOD精炼成分(%)为1.84C ,2.18Mn ,24.88Cr的粗炼钢水 ,经吹O2 、N2 ,加电解锰、硅铁、铝块以及NCr合金成分微调 ,冶炼出(%) 0.12C ,0.42Si,14.96Mn ,0.026P ,0.001S ,22.57Cr,0.56N的高氮奥氏体不锈钢 1Cr22Mn15N。精炼钢水浇铸成590kg锭 ,初轧轧成 135mm × 157mm坯 ,再经连轧成Φ8~12mm的棒材。成品材固溶处理后的屈服强度为565~585MPa ,抗拉强度920~955 MPa ,延伸率为54.5 %~56.5% ,具有优良的耐腐蚀性能  相似文献   

17.
 为了研究钢液增氮的新工艺,以钢液增氮的冶金热力学和动力学为基础,在10 kg感应炉上添加氮化铁合金以过饱和氮的方式来提高钢液最终氮含量,并对Cr18Mn18N和Cr23Mn17N两种实验材料的理论氮含量饱和值进行了计算。实验表明,采用氮化铬和氮化锰冶炼,钢液最终氮含量大幅度超过钢液与气相平衡时的氮含量,且氮化铬的增氮效果明显优于氮化锰。采用氮化铬冶炼,氮的收得率和氮的质量分数最高可达89%和098%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号