共查询到19条相似文献,搜索用时 86 毫秒
1.
针对传统的人工特征选取需要耗费大量时间和精力的问题,本文在传统卷积神经网络(convolutional neural networks,CNN)模型的基础上,提出了一种基于多尺度卷积核CNN的特征提取与分类方法,并在脑电情绪识别分类上进行了验证.本文首先进行了通道选择方面的研究,其次使用多尺度卷积核CNN模型对提取了微分熵(differential entropy feature,DE)特征的脑电数据进行情绪三分类实验,相比于传统的CNN模型,多尺度卷积核CNN模型在卷积层中采用多个尺度的卷积核,同时从高维度与低维度对脑电信号进行二次特征提取.实验结果表明,预处理数据在33通道的情绪分类平均准确率为89.72%,几乎接近全通道的平均准确率;多尺度卷积核CNN在微分熵特征上的情绪三分类取得了98.19%的平均分类准确率,实验结果证明了该模型的有效性和鲁棒性. 相似文献
2.
针对不同个体的脑电信号差异大且易受到环境因素影响的问题, 结合去基线干扰及脑电通道选择方法, 提出一种基于连续卷积神经网络的情绪分类识别算法. 首先进行基线信号的微分熵(differential entropy, DE)特征的选取研究, 将数据处理为多通道输入后使用连续卷积神经网络进行分类实验, 然后选择最佳电极个数. 实验结果表明, 将实验脑电信号微分熵与被试者实验脑电前一秒的基线信号微分熵的差值映射为二维矩阵后, 在频率维度组合为多通道的形式作为连续卷积神经网络的输入, 在22通道上唤醒度和效价的分类平均准确率为95.63%和95.13%, 接近32通道的平均准确率. 相似文献
3.
针对脑电信号情感识别率偏低的问题,提出了一种基于3DC-BGRU的脑电情感识别方法。对单通道脑电信号进行短时傅里叶变换(STFT),提取相关频带的时频信息构成二维时频图,并将多个通道的时频图构成一种全新的时间、频率和通道的三维数据形式,通过三维卷积的方式设计了一种新颖的卷积神经网络(CNN)模型对三维数据进行深层特征提取,设计双向门控循环单元(BGRU)对深层特征的序列信息进行处理并配合Softmax进行分类。实验结果表明该方法分类识别率得到提高。 相似文献
4.
该研究使用脑电(EEG)信号经过处理得到的数据集DEAP和HCI,利用微分熵作为特征提取的工具,基于传统机器学习算法,集成学习中的梯度提升树、Xgboost、Adaboost、随机森林算法,以及深度神经网络、卷积神经网络与GoogLeNet实现跨被试的EEG特征情感识别任务,并比较各方法应用于EEG情感分析时的结果差异。比较平均准确率,结果表明深度学习方法取得了不错的成绩,三个深度模型对两个数据集的valence平均准确率达到0.5956和0.6307之间,arousal达到0.6062和0.6774之间,显著优于机器学习算法与集成学习模型取得的结果。 相似文献
5.
针对股票数据共线性和非线性的特点,提出了一种基于卷积神经网络(Convolutional Neural Network,CNN)和门控循环单元(Gated Recurrent Unit,GRU)神经网络的混合预测模型,并对沪深300指数、上证综指和深证成指进行了预测.该模型首先采用CNN提取特征向量,对原始数据进行降维... 相似文献
6.
7.
针对传统机器学习模型过于依赖特征工程、多导睡眠图(Polysomnography,PSG)数据获取难度大等问题,提出一种基于深度卷积神经网络(ConvolutionalNeuralNetworks,CNN)和循环神经网络(RecurrentNeural Network,RNN)的自动睡眠分期模型。该模型不需要烦琐的特征提取过程,仅使用单通道脑电信号即可在较高水准下完成自动睡眠分期,在公开数据集Sleep-EDF的Fpz-CZ通道脑电数据上实现了85.2%的分类准确率。 相似文献
8.
9.
情感作为人脑的高级功能,对人们的个性特征和心理健康有很大的影响,利用网上公开的脑电情感数据库(DEAP(Database for emotion analysis using physiological signals)数据库),根据心理效价和激励唤醒度等级进行情感划分,对压力和平静等5种情感进行研究分析.针对脑电信号时空特征结合的特点,把深度学习中的卷积神经网络(Convolutional neural network,CNN)和长短期记忆网络(Long short term memory,LSTM)两者作为基本前提,并在此基础之上设计了一个RCNN-LSTM的脑电情感信号分类模型.利用循环卷积神经网络(Recurrent convolutional neural network,RCNN)自动提取脑电信号中的抽象特征,省去了人工选择与降维的过程,然后结合LSTM网络对脑电情感信号进行分类识别.实验结果表明,利用该方法对5种情感类别的平均分类识别率达到了96.63%,证明了该方法的有效性. 相似文献
10.
为进一步探究不同类型特征互补性对脑电情绪分类的影响,提出一种基于多特征融合的脑电情绪分类新方法。对预处理后的脑电信号进行DE、MST和SampEn特征提取,采用双样本T检验去除冗余筛选出最优特征并融合,采用SVM分类模型来识别不同的情绪状态。在SEED-Ⅳ数据集上的实验结果表明,单一特征中DE的平均分类准确率最高(77.86%),而融合非线性SampEn特征与功能连接MST属性后平均分类准确率得到进一步提升(84.58%),不同时间段采集的数据上重测实验则证明了该方法的有效性与稳定性。 相似文献
11.
提出一种基于深度卷积联合适应网络(Convolutional neural network-joint adaptation network,CNN-JAN)的脑电信号(Electroencephalogram, EEG)情感识别模型。该模型将迁移学习中联合适应的思想融合到深度卷积网络中,首先采用长方形卷积核提取数据的空间特征,捕捉脑电数据通道间的深层情感相关信息,再将提取的空间特征输入含有联合分布的多核最大均值差异算法(Multi-kernel joint maximum mean discrepancy,MK-JMMD)的适配层进行迁移学习,使用MK-JMMD度量算法解决源域和目标域分布不同的问题。所提方法在SEED数据集上使用微分熵特征和微分尾端性特征分别进行情感分类实验,其中使用微分熵特征被试内跨试验准确率达到84.01%,与对比实验和目前流行的迁移学习方法相比,准确率进一步提高,跨被试实验精度也取得较好的性能,验证了该模型用于EEG信号情感识别任务的有效性。 相似文献
12.
针对情绪脑电信号提出一种网络图特征学习与情绪识别算法。首先,利用情绪脑电数据构建对应的情绪脑电网络;其次,在由情绪脑电网络尺度定义的高维空间构建脑电网络样本间的局部邻接关系图以挖掘样本集的分布特性,进而得到样本集的图拉普拉斯矩阵;在此基础上,进一步利用谱图理论对情绪脑电网络的最优低维空间映射进行求解,在保留原始样本局部邻接关系的前提下实现对情绪脑电网络的降维与重新表达,并将每个情绪脑电网络样本表示成1组脑电网络特征集;最后利用提取到的情绪脑电网络特征集,结合支持向量机分类学习算法,针对情绪识别任务进行识别模型的训练和学习,实现对情绪状态的准确解码与识别。在国际公开情绪脑电数据集的实验结果表明:相较于传统情绪识别算法,本文所提方法能有效提升情绪识别准确率,在基于公开数据集的多类情绪识别任务中分别达到91.85%(SEED数据集, 3类)、79.36%(MAHNOB-HCI数据集,3类)和79%(DEAP数据集,4类)的稳健识别效果。 相似文献
13.
传统基于脑电信号(electroencephalogram,EEG)的情感识别主要采用单一的脑电特征提取方法,为了充分利用EEG中蕴含的丰富信息,提出一种多域特征融合的脑电情感识别新方法。提取了EEG的时域、频域和空域特征,将三域特征进行融合作为情感识别模型的输入。首先计算不同时间窗EEG信号的alpha、beta、gamma三个频段功率谱密度,并结合脑电电极空间信息构成EEG图片,然后利用卷积神经网络(convolutional neural network,CNN)与双向长短期记忆网络(bidirectional long short-term memory network,BLSTM)构建CNN-BLSTM情感识别模型,分别对时、频、空三域特征进行学习。在SEED数据集对该方法进行验证,结果表明该方法能有效提高情感识别精度,平均识别准确率达96.25%。 相似文献
14.
情感计算是现代人机交互中的关键问题, 随着人工智能的发展, 基于脑电信号(electroencephalogram, EEG)的情绪识别已经成为重要的研究方向. 为了提高情绪识别的分类精度, 本研究引入堆叠自动编码器(stacked auto-encoder, SAE)对EEG多通道信号进行深度特征提取, 并提出一种基于广义正态分布优化的支持向量机(generalized normal distribution optimization based support vector machine, GNDO-SVM)情绪识别模型. 实验结果表明, 与基于遗传算法、粒子群算法和麻雀搜索算法优化的支持向量机模型相比, 所提出的GNDO-SVM模型具有更优的分类性能, 基于SAE深度特征的情感识别准确率达到了90.94%, 表明SAE能够有效地挖掘EEG信号不同通道间的深度相关性信息. 因此, 利用SAE深度特征结合GNDO-SVM模型可以有效地实现EEG信号的情绪识别. 相似文献
15.
16.
为了保留电极之间的空间信息以及充分提取脑电信号(Electroencephalogram,EEG)特征,提高情感识别的准确率,提出一种基于三维输入卷积神经网络的特征学习和分类算法.采用单熵(近似熵(Approximate Entropy,ApEn)、排列熵(Permutation Entropy,PeEn)和奇异值分解... 相似文献
17.
情绪是由大脑内多个通道共同作用产生的,格兰杰因果检验作为情绪识别的主流方法,在计算任意2个通道之间的因果关系时容易忽略其他通道的影响。面向多通道脑电信号,提出一种基于条件格兰杰因果检验(CGC)的因果网络情绪识别方法。利用CGC算法计算不同情绪下大脑全通道的因果关系,据此构建因果网络,并通过分析各通道的入/出度和介数拓扑属性找到关键通道,得到简化的因果网络进行情绪识别。将节点之间的因果连接关系作为特征分别输入SVM和KNN分类器进行分类训练,实验结果表明,简化网络的识别率分别为75.3%和78.4%,验证了所提方法的有效性。 相似文献
18.
语音情感识别是计算机理解人类情感最直接的方式,是实现人机交互智能化的重要渠道,但识别模型的性能需要进一步提升。为实现这一目标,提出一种基于循环卷积神经网络的语音情感识别模型ARCNN-GAP。其中,循环卷积层具有弹性路径,在确保网络深度的同时能保证优化时的梯度回传,提取更加有效的情感特征;全局平均池化运算可以在减少计算复杂度的同时降低过拟合风险;而注意力机制能够使模型更多关注情感相关特征。使用韵律特征和谱特征的融合特征在CASIA和EMO-DB数据库上进行研究,分别取得了83.29%和75.28%的识别率。实验结果表明:ARCNN-GAP具有更好的识别性能和泛化性。 相似文献
19.
针对情感识别中堆叠式自动编码器存在反向传播方法收敛速度慢和容易陷入局部最优的问题,提出一种基于堆叠式降噪自动编码器(SDAE)和正则化极限学习机(RELM)的情感状态识别方法。从脑电信号的时域、频域和时频域中提取表征情感状态的初始特征,使用SDAE进行无监督特征学习,提取初始特征的高层抽象表示。在网络的回归层,使用RELM进行情感分类。在DEAP数据集上的实验结果表明,与SDAE以及DT、KNN等传统基于机器学习的方法相比,该方法在实时性、准确性和泛化性能等方面均有明显提升。 相似文献