首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alzheimer’s disease (AD) is a neurodegenerative disease, characterized histopathologically by intra-neuronal tau-related lesions and by the accumulation of amyloid β-peptide (Aβ) in the brain parenchyma and around cerebral blood vessels. According to the vascular hypothesis of AD, an alteration in the neurovascular unit (NVU) could lead to Aβ vascular accumulation and promote neuronal dysfunction, accelerating neurodegeneration and dementia. To date, the effects of insoluble vascular Aβ deposits on the NVU and the blood–brain barrier (BBB) are unknown. In this study, we analyze different Aβ species and their association with the cells that make up the NVU. We evaluated post-mortem AD brain tissue. Multiple immunofluorescence assays were performed against different species of Aβ and the main elements that constitute the NVU. Our results showed that there are insoluble vascular deposits of both full-length and truncated Aβ species. Besides, insoluble aggregates are associated with a decrease in the phenotype of the cellular components that constitute the NVU and with BBB disruption. This approach could help identify new therapeutic targets against key molecules and receptors in the NVU that can prevent the accumulation of vascular fibrillar Aβ in AD.  相似文献   

2.
Alzheimer’s disease (AD) is the most common neurodegenerative disease worldwide. Histopathologically, AD presents with two hallmarks: neurofibrillary tangles (NFTs), and aggregates of amyloid β peptide (Aβ) both in the brain parenchyma as neuritic plaques, and around blood vessels as cerebral amyloid angiopathy (CAA). According to the vascular hypothesis of AD, vascular risk factors can result in dysregulation of the neurovascular unit (NVU) and hypoxia. Hypoxia may reduce Aβ clearance from the brain and increase its production, leading to both parenchymal and vascular accumulation of Aβ. An increase in Aβ amplifies neuronal dysfunction, NFT formation, and accelerates neurodegeneration, resulting in dementia. In recent decades, therapeutic approaches have attempted to decrease the levels of abnormal Aβ or tau levels in the AD brain. However, several of these approaches have either been associated with an inappropriate immune response triggering inflammation, or have failed to improve cognition. Here, we review the pathogenesis and potential therapeutic targets associated with dysfunction of the NVU in AD.  相似文献   

3.
Pathophysiology of chronic neurodegeneration is mainly based on complex mechanisms related to aberrant signal transduction, excitation/inhibition imbalance, excitotoxicity, synaptic dysfunction, oxidative stress, proteotoxicity and protein misfolding, local insulin resistance and metabolic dysfunction, excessive cell death, development of glia-supported neuroinflammation, and failure of neurogenesis. These mechanisms tightly associate with dramatic alterations in the structure and activity of the neurovascular unit (NVU) and the blood–brain barrier (BBB). NVU is an ensemble of brain cells (brain microvessel endothelial cells (BMECs), astrocytes, pericytes, neurons, and microglia) serving for the adjustment of cell-to-cell interactions, metabolic coupling, local microcirculation, and neuronal excitability to the actual needs of the brain. The part of the NVU known as a BBB controls selective access of endogenous and exogenous molecules to the brain tissue and efflux of metabolites to the blood, thereby providing maintenance of brain chemical homeostasis critical for efficient signal transduction and brain plasticity. In Alzheimer’s disease, mitochondria are the target organelles for amyloid-induced neurodegeneration and alterations in NVU metabolic coupling or BBB breakdown. In this review we discuss understandings on mitochondria-driven NVU and BBB dysfunction, and how it might be studied in current and prospective NVU/BBB in vitro models for finding new approaches for the efficient pharmacotherapy of Alzheimer’s disease.  相似文献   

4.
Recent studies implicate astrocytes in Alzheimer’s disease (AD); however, their role in pathogenesis is poorly understood. Astrocytes have well-established functions in supportive functions such as extracellular ionic homeostasis, structural support, and neurovascular coupling. However, emerging research on astrocytic function in the healthy brain also indicates their role in regulating synaptic plasticity and neuronal excitability via the release of neuroactive substances named gliotransmitters. Here, we review how this “active” role of astrocytes at synapses could contribute to synaptic and neuronal network dysfunction and cognitive impairment in AD.  相似文献   

5.
Pericytes at the blood–brain barrier (BBB) are located between the tight endothelial cell layer of the blood vessels and astrocytic endfeet. They contribute to central nervous system (CNS) homeostasis by regulating BBB development and maintenance. Loss of pericytes results in increased numbers of infiltrating immune cells in the CNS in experimental autoimmune encephalomyelitis (EAE), the mouse model for multiple sclerosis (MS). However, little is known about their competence to modulate immune cell activation or function in CNS autoimmunity. To evaluate the capacity of pericytes to directly interact with T cells in an antigen-specific fashion and potentially (re)shape their function, we depleted major histocompatibility complex (MHC) class II from pericytes in a cell type-specific fashion and performed T cell-pericyte cocultures and EAE experiments. We found that pericytes present antigen in vitro to induce T cell activation and proliferation. In an adoptive transfer EAE experiment, pericyte-specific MHC II KO resulted in locally enhanced T cell infiltration in the CNS; even though, overall disease course of mice was not affected. Thus, pericytes may serve as non-professional antigen-presenting cells affecting states of T cell activation, thereby locally shaping lesion formation in CNS inflammation but without modulating disease severity.  相似文献   

6.
7.
Exposure to hypoxic-ischemic (HI) insults in newborns can predispose them to severe neurological sequela. The mechanisms underlying HI-related brain injury have not been completely elucidated. The neurovascular unit (NVU) is a composite of structures that protect the brain from the influx of detrimental molecules. Changes in the NVU after HI are important because they could reveal endogenous neuroprotective pathways in the cerebral microvasculature. Furthermore, the time course of changes in the NVU after exposure to HI in the newborn remains to be determined. In this study, we examined the effects of severe HI on the time course of changes in the NVU in neonatal rats. Brains were collected from rats exposed to right carotid artery ligation and 2 h of hypoxia on postnatal day 7 with recovery for 6 or 48 h after exposure to sham treatment (Sham) or HI. The right HI and left hypoxic alone sides of the brains were examined by quantitative immunohistochemistry for vascular density (laminin), pericyte vascular coverage (PDGFRβ), astrocyte vascular coverage (GFAP), and claudin-5 expression in the microvasculature of the cerebral cortex, white matter, and hippocampus. HI-related brain injury in neonatal rats was associated with increases in vascular density in the cortex and hippocampus 48 h after HI as well as neurovascular remodeling, including loss of pericyte coverage in the cortex and increases in claudin-5 in the hippocampus 6 h after HI. Astrocyte coverage was not affected by HI injury. The time course of the responses in the different components of the NVU varied after exposure to HI. There were also differential regional responses in the elements of the NVU in response to HI and hypoxia alone.  相似文献   

8.
The disruption of blood–brain barrier (BBB) for multiple sclerosis (MS) pathogenesis has a double effect: early on during the onset of the immune attack and later for the CNS self-sustained ‘inside-out’ demyelination and neurodegeneration processes. This review presents the characteristics of BBB malfunction in MS but mostly highlights current developments regarding the impairment of the neurovascular unit (NVU) and the metabolic and mitochondrial dysfunctions of the BBB’s endothelial cells. The hypoxic hypothesis is largely studied and agreed upon recently in the pathologic processes in MS. Hypoxia in MS might be produced per se by the NVU malfunction or secondary to mitochondria dysfunction. We present three different but related terms that denominate the ongoing neurodegenerative process in progressive forms of MS that are indirectly related to BBB disruption: progression independent of relapses, no evidence of disease activity and smoldering demyelination or silent progression. Dimethyl fumarate (DMF), modulators of S1P receptor, cladribine and laquinimode are DMTs that are able to cross the BBB and exhibit beneficial direct effects in the CNS with very different mechanisms of action, providing hope that a combined therapy might be effective in treating MS. Detailed mechanisms of action of these DMTs are described and also illustrated in dedicated images. With increasing knowledge about the involvement of BBB in MS pathology, BBB might become a therapeutic target in MS not only to make it impenetrable against activated immune cells but also to allow molecules that have a neuroprotective effect in reaching the cell target inside the CNS.  相似文献   

9.
Aging is associated with a decline in cognitive function, which can partly be explained by the accumulation of damage to the brain cells over time. Neurons and glia undergo morphological and ultrastructure changes during aging. Over the past several years, it has become evident that at the cellular level, various hallmarks of an aging brain are closely related to mitophagy. The importance of mitochondria quality and quantity control through mitophagy is highlighted by the contribution that defects in mitochondria–autophagy crosstalk make to aging and age-related diseases. In this review, we analyze some of the more recent findings regarding the study of brain aging and neurodegeneration in the context of mitophagy. We discuss the data on the dynamics of selective autophagy in neurons and glial cells during aging and in the course of neurodegeneration, focusing on three mechanisms of mitophagy: non-receptor-mediated mitophagy, receptor-mediated mitophagy, and transcellular mitophagy. We review the role of mitophagy in neuronal/glial homeostasis and in the molecular pathogenesis of neurodegenerative disorders, such as Parkinson’s disease, Alzheimer’s disease, and other disorders. Common mechanisms of aging and neurodegeneration that are related to different mitophagy pathways provide a number of promising targets for potential therapeutic agents.  相似文献   

10.
The blood-brain barrier (BBB) is a selective barrier and a functional gatekeeper for the central nervous system (CNS), essential for maintaining brain homeostasis. The BBB is composed of specialized brain endothelial cells (BECs) lining the brain capillaries. The tight junctions formed by BECs regulate paracellular transport, whereas transcellular transport is regulated by specialized transporters, pumps and receptors. Cytokine-induced neuroinflammation, such as the tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), appear to play a role in BBB dysfunction and contribute to the progression of Alzheimer’s disease (AD) by contributing to amyloid-β (Aβ) peptide accumulation. Here, we investigated whether TNF-α and IL-1β modulate the permeability of the BBB and alter Aβ peptide transport across BECs. We used a human BBB in vitro model based on the use of brain-like endothelial cells (BLECs) obtained from endothelial cells derived from CD34+ stem cells cocultivated with brain pericytes. We demonstrated that TNF-α and IL-1β differentially induced changes in BLECs’ permeability by inducing alterations in the organization of junctional complexes as well as in transcelluar trafficking. Further, TNF-α and IL-1β act directly on BLECs by decreasing LRP1 and BCRP protein expression as well as the specific efflux of Aβ peptide. These results provide mechanisms by which CNS inflammation might modulate BBB permeability and promote Aβ peptide accumulation. A future therapeutic intervention targeting vascular inflammation at the BBB may have the therapeutic potential to slow down the progression of AD.  相似文献   

11.
By upregulation of cell adhesion molecules and secretion of proinflammatory cytokines, cells of the neurovascular unit, including pericytes and endothelial cells, actively participate in neuroinflammatory reactions. As previously shown, both cell types can activate inflammasomes, cerebral endothelial cells (CECs) through the canonical pathway, while pericytes only through the noncanonical pathway. Using complex in vitro models, we demonstrate here that the noncanonical inflammasome pathway can be induced in CECs as well, leading to a further increase in the secretion of active interleukin-1β over that observed in response to activation of the canonical pathway. In parallel, a more pronounced disruption of tight junctions takes place. We also show that CECs respond to inflammatory stimuli coming from both the apical/blood and the basolateral/brain directions. As a result, CECs can detect factors secreted by pericytes in which the noncanonical inflammasome pathway is activated and respond with inflammatory activation and impairment of the barrier properties. In addition, upon sensing inflammatory signals, CECs release inflammatory factors toward both the blood and the brain sides. Consequently, CECs activate pericytes by upregulating their expression of NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3), an inflammasome-forming pattern recognition receptor. In conclusion, cerebral pericytes and endothelial cells mutually activate each other in inflammation.  相似文献   

12.
The physiological balance between excitation and inhibition in the brain is significantly affected in Alzheimer’s disease (AD). Several neuroactive compounds and their signaling pathways through various types of receptors are crucial in brain homeostasis, among them glutamate and γ-aminobutyric acid (GABA). Activation of microglial receptors regulates the immunological response of these cells, which in AD could be neuroprotective or neurotoxic. The novel research approaches revealed the complexity of microglial function, including the interplay with other cells during neuroinflammation and in the AD brain. The purpose of this review is to describe the role of several proteins and multiple receptors on microglia and neurons, and their involvement in a communication network between cells that could lead to different metabolic loops and cell death/survival. Our review is focused on the role of glutamatergic, GABAergic signaling in microglia–neuronal cross-talk in AD and neuroinflammation. Moreover, the significance of AD-related neurotoxic proteins in glutamate/GABA-mediated dialogue between microglia and neurons was analyzed in search of novel targets in neuroprotection, and advanced pharmacological approaches.  相似文献   

13.
Ischemic stroke is a damaging cerebral vascular disease associated with high disability and mortality rates worldwide. In spite of the continuous development of new diagnostic and prognostic methods, early detection and outcome prediction are often very difficult. The neurovascular unit (NVU) is a complex multicellular entity linking the interactions between neurons, glial cells, and brain vessels. Novel research has revealed that exosome-mediated transfer of microRNAs plays an important role in cell-to-cell communication and, thus, is integral in the multicellular crosstalk within the NVU. After a stroke, NVU homeostasis is altered, which induces the release of several potential biomarkers into the blood vessels. The addition of biological data representing all constituents of the NVU to clinical and neuroradiological findings can significantly advance stroke evaluation and prognosis. In this review, we present the current literature regarding the possible beneficial roles of exosomes derived from the components of the NVU and multipotent mesenchymal stem cells in preclinical studies of ischemic stroke. We also discuss the most relevant clinical trials on the diagnostic and prognostic roles of exosomes in stroke patients.  相似文献   

14.
The presence of insoluble aggregates of amyloid β (Aβ) in the form of neuritic plaques (NPs) is one of the main features that define Alzheimer’s disease. Studies have suggested that the accumulation of these peptides in the brain significantly contributes to extensive neuronal loss. Furthermore, the content and distribution of cholesterol in the membrane have been shown to have an important effect on the production and subsequent accumulation of Aβ peptides in the plasma membrane, contributing to dysfunction and neuronal death. The monomeric forms of these membrane-bound peptides undergo several conformational changes, ranging from oligomeric forms to beta-sheet structures, each presenting different levels of toxicity. Aβ peptides can be internalized by particular receptors and trigger changes from Tau phosphorylation to alterations in cognitive function, through dysfunction of the cholinergic system. The goal of this review is to summarize the current knowledge on the role of lipids in Alzheimer’s disease and their relationship with the basal cholinergic system, as well as potential disease-modifying therapies.  相似文献   

15.
Accumulated experimental data strongly suggest that astrocytes play an important role in the pathogenesis of neurodegeneration, including Alzheimer’s disease (AD). The effect of astrocytes on the calcium activity of neuron–astroglia networks in AD modelling was the object of the present study. We have expanded and improved our approach’s capabilities to analyze calcium activity. We have developed a novel algorithm to construct dynamic directed graphs of both astrocytic and neuronal networks. The proposed algorithm allows us not only to identify functional relationships between cells and determine the presence of network activity, but also to characterize the spread of the calcium signal from cell to cell. Our study showed that Alzheimer’s astrocytes can change the functional pattern of the calcium activity of healthy nerve cells. When healthy nerve cells were cocultivated with astrocytes treated with Aβ42, activation of calcium signaling was found. When healthy nerve cells were cocultivated with 5xFAD astrocytes, inhibition of calcium signaling was observed. In this regard, it seems relevant to further study astrocytic–neuronal interactions as an important factor in the regulation of the functional activity of brain cells during neurodegenerative processes. The approach to the analysis of streaming imaging data developed by the authors is a promising tool for studying the collective calcium dynamics of nerve cells.  相似文献   

16.
Central nervous system (CNS) homeostasis is closely linked to the delicate balance of the microenvironment in which different cellular components of the neurovascular unit (NVU) coexist. Intercellular communication plays a pivotal role in exchanges of signaling molecules and mediators essential for survival functions, as well as in the removal of disturbing elements that can lead to related pathologies. The specific signatures of connexins (Cxs), proteins which form either gap junctions (GJs) or hemichannels (HCs), represent the biological substrate of the pathophysiological balance. Connexin 43 (Cx43) is undoubtedly one of the most important factors in glia–neuro–vascular crosstalk. Herein, Cxs signatures of every NVU component are highlighted and their critical influence on functional processes in healthy and pathological conditions of nervous microenvironment is reviewed.  相似文献   

17.
The surfactant protein-G (SP-G) has recently been discovered in the brain and linked to fluid balance regulations. Stroke is characterized by impaired vessel integrity, promoting water influx and edema formation. The neurovascular unit concept (NVU) has been generated to cover not only ischemic affections of neurons or vessels but also other regionally associated cells. This study provides the first spatio-temporal characterization of SP-G and NVU elements after experimental stroke. Immunofluorescence labeling was applied to explore SP-G, vascular and cellular markers in mice (4, 24, and 72 h of ischemia), rats (24 h of ischemia), and sheep (two weeks of ischemia). Extravasated albumin indicated vascular damage within ischemic areas. Quantifications revealed decreasing SP-G signals in the ischemia-affected neocortex and subcortex. Inverse immunosignals of SP-G and vascular elements existed throughout all models. Despite local associations between SP-G and the vasculature, a definite co-localization was not seen. Along with a decreased SP-G-immunoreactivity in ischemic areas, signals originating from neurons, glial elements, and the extracellular matrix exhibited morphological alterations or changed intensities. Collectively, this study revealed regional alterations of SP-G, vascular, and non-vascular NVU elements after ischemia, and may thus stimulate the discussion about the role of SP-G during stroke.  相似文献   

18.
Synaptic aging has been associated with neuronal circuit dysfunction and cognitive decline. Reduced mitochondrial function may be an early event that compromises synaptic integrity and neurotransmission in vulnerable brain regions during physiological and pathological aging. Thus, we aimed to measure mitochondrial function in synapses from three brain regions at two different ages in the 3xTg-AD mouse model and in wild mice. We found that aging is the main factor associated with the decline in synaptic mitochondrial function, particularly in synapses isolated from the cerebellum. Accumulation of toxic compounds, such as tau and Aβ, that occurred in the 3xTg-AD mouse model seemed to participate in the worsening of this decline in the hippocampus. The changes in synaptic bioenergetics were also associated with increased activation of the mitochondrial fission protein Drp1. These results suggest the presence of altered mechanisms of synaptic mitochondrial dynamics and their quality control during aging and in the 3xTg-AD mouse model; they also point to bioenergetic restoration as a useful therapeutic strategy to preserve synaptic function during aging and at the early stages of Alzheimer’s disease (AD).  相似文献   

19.
Tumor suppressor molecules play a pivotal role in regulating DNA repair, cell proliferation, and cell death, which are also important processes in the pathogenesis of Alzheimer’s disease. Alzheimer’s disease is the most common neurodegenerative disorder, however, the precise molecular events that control the death of neuronal cells are unclear. Recently, a fundamental role for tumor suppressor molecules in regulating neurons in Alzheimer’s disease was highlighted. Generally, onset of neurodegenerative diseases including Alzheimer’s disease may be delayed with use of dietary neuro-protective agents against oxidative stresses. Studies suggest that dietary antioxidants are also beneficial for brain health in reducing disease-risk and in slowing down disease-progression. We summarize research advances in dietary regulation for the treatment of Alzheimer’s disease with a focus on its modulatory roles in BRCA1 and p53 tumor suppressor expression, in support of further therapeutic research in this field.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号