首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Optimal reservoir operation and water allocation are critical issues in sustainable water resource management due to increasing water demand. Multiplicity of stockholders with different objectives and utilities makes reservoir operation a complicated problem with a variety of constraints and objectives to be considered. In this case, the conflict resolution models can be efficiently used to determine the optimal water allocation scheme considering the utility and relative authority of different stakeholders. In this study, the Nash product is used for formulation of the objective function of a reservoir water allocation model. The Analytic Hierarchy Process (AHP) is used to determine the importance of each stockholder in bargaining for water. The Particle Swarm Optimization algorithm (PSO) and the Imperialism Competitive Algorithm (ICA) are applied to solve the proposed optimization model. System performance indices including reliability, resiliency and vulnerability are used to evaluate the performance of optimization algorithms. The simplest and most often-used reservoir policy (Standard Operating Policy, SOP) is also used in order to evaluate the performance of the proposed models. The proposed model is applied to the Karkheh River-Reservoir system located in south western part of Iran as a case study. Results show the significance of the application of conflict resolution models, such as the Nash theory and proposed optimization algorithms, for water allocation in the regional scale especially in complicated water supply systems.  相似文献   

2.
Given the institutional limitations of multi-stakeholders, exploring the synergistic revenue from the joint reservoir operations of a multi-stakeholder multi-reservoir system requires a synergistic revenue allocation mechanism to ensure a beneficial solution for multi stakeholders. This study established a synergistic revenue allocation model using bargaining game theory under the principles of equity, rationality, and efficiency. For the maximization the Nash product of gains in the utility of stakeholders and constraints on the feasibility of allocation plans considering all the possible formations of sub-coalitions, the analytic optimal solution of the bargaining model was derived using the first-order optimality condition. The optimal revenue allocation plan meets the conditions of the equal quasi-marginal utility function among stakeholders. The methodologies were applied to a hypothetical cascade reservoir system operated by multiple stakeholders. Compared with the revenue allocation plans obtained by a proportional rule method and the Shapley value method, the results corroborate that (1) the allocation plan of the bargaining model is jointly determined by the interval of the revenue range of each reservoir and the effectiveness of the sub-coalition constraints, indicating that the allocated synergistic revenue is positively correlated with the singleton contribution and team contribution on the total revenue of the grand coalition; (2) the difference in the plans obtained by the three methods is generally determined by the difference in equity definition; and (3) the synergistic revenue allocation plan obtained from the bargaining model is the highest homogenized among all reservoirs (stakeholders), which demonstrates that the revenue of those dominated stakeholders can be improved compared with other plans. The proposed methodologies provide new insights to guide benefit share decisions in multi-stakeholder reservoirs system.  相似文献   

3.
Conflict-resolution models can be used as practical approaches to consider the contradictions and trade-offs between the involved stakeholders in integrated water resource management. These models are utilized to reach an optimal solution considering agents interactions. In this paper, a new methodology is developed based on multi-objective optimization model (NSGA-II), groundwater simulation model, M5P model tree, fallback bargaining procedures and social choice rules to determine the optimal groundwater management policies with an emphasis on resolving conflicts between stakeholders. By incorporating the multi-objective simulation-optimization model and bargaining methods, the optimal groundwater allocation policies are determined and the preferences of the stakeholders as well as social criteria such as justice are also considered. The obtained data set, based on Monte Carlo analysis of calibrated MODFLOW model, is used for training and validating the M5P meta-models. The validated M5P meta-models are linked with NSGA-II to determine the trade-off curve (Pareto front) for the objectives. Social choice rule and fallback bargaining methods, as conflict-resolution models, are applied to determine the best socio-optimal solution among stakeholders, and their results are compared. The effectiveness of the proposed methodology is verified in a case study of Darian aquifer, Fars province, Iran. Results indicated that the solutions obtained by the proposed conflict-resolution approaches have an appropriate applicability. Total groundwater withdrawal, after applying the optimal groundwater allocations, reduced to 20.85 MCM, resulting in a 4.62 m increase in the mean groundwater level throughout the aquifer.  相似文献   

4.
Water allocation in a competing environment is a major social and economic challenge especially in water stressed semi-arid regions. In developing countries the end users are represented by the water sectors in most parts and conflict over water is resolved at the agency level. In this paper, two reservoir operation optimization models for water allocation to different users are presented. The objective functions of both models are based on the Nash Bargaining Theory which can incorporate the utility functions of the water users and the stakeholders as well as their relative authorities on the water allocation process. The first model is called GA–KNN (Genetic Algorithm–K Nearest Neighborhood) optimization model. In this model, in order to expedite the convergence process of GA, a KNN scheme for estimating initial solutions is used. Also KNN is utilized to develop the operating rules in each month based on the derived optimization results. The second model is called the Bayesian Stochastic GA (BSGA) optimization model. This model considers the joint probability distribution of inflow and its forecast to the reservoir. In this way, the intrinsic and forecast uncertainties of inflow to the reservoir are incorporated. In order to test the proposed models, they are applied to the Satarkhan reservoir system in the north-western part of Iran. The models have unique features in incorporating uncertainties, facilitating the convergence process of GA, and handling finer state variable discretization and utilizing reliability based utility functions for water user sectors. They are compared with the alternative models. Comparisons show the significant value of the proposed models in reservoir operation and supplying the demands of different water users.  相似文献   

5.
In the present research, a multi-objective model is developed for surface water resource management in the river basin area which is connected to the lake. This model considers different components of sustainable water resource management including economic, social and environmental aspects, and simultaneously tries to resolve conflicts between different stakeholders by means of non-symmetric Nash bargaining, which is linked to the multi-objective optimization method. This study proposes a new methodology to improve Nash Conflict Resolution through finding the optimum degree of the utility function. The proposed model is examined in the Zarrineh River basin in Iran. The results show that the amount of available resources or volume of reservoirs play a significant role in determining the optimal degree of the utility function and efficiency of the proposed method in such a way that the higher amount of resources or the larger reservoirs will result in the higher optimal degree of the utility function. In the proposed multi-objective model, two different amounts of surface water inflow are considered. The first assumed amount is the long-term average flow rate and the second one is equal to 80% of the first mode, which is reduced based on the estimated impacts of climate changes. This multi-objective allocation model could supply 100 and 97.5% of the environmental demand of Lake Urmia in the first and second situations, respectively.  相似文献   

6.
In this paper, the theoretical approach presented in Part I is demonstrated by means of case study on the optimal allocation water resources for Yellow River Basin of China. The object of the case study was to find the optimization of water allocation among subregions and trunk streams of the basin in order to achieve the maximum national economic benefits and the optimal reservoir storage required to maintain the long-term balance of water resources.The optimal allocation of water resources pattern caters for irrigation, hydropower generation, navigation, water supply and other sectors, depending to a large extent on the objective economic benefits obtained from the whole valley and on the objective of reservoir storage. Other factors incapable of being expressed in terms of the two objectives considered in the section concerning constrained conditions. This research is applicable widely and suitable for the solution of complicated, multi-objective large-system problems involving non-linearity, numerous variables and various constrained conditions. Finally, the results of optimal allocation of water resources for Yellow River Basin (OAWRYRB) have been selected on an optimum basis in accordance with the multi-objective method.The application of our optimization techniques to the Yellow River basic showed that the total water of the Yellow River over a year can be allocated by optimization. The maximum national economic benefits and the optimal reservoir storage required to maintain the long-term balance of water resources can also be obtained by the optimal techniques.  相似文献   

7.
In this paper a fuzzy dynamic Nash game model of interactions between water users in a reservoir system is presented. The model represents a fuzzy stochastic non-cooperative game in which water users are grouped into four players, where each player in game chooses its individual policies to maximize expected utility. The model is used to present empirical results about a real case water allocation from a reservoir, considering player (water user) non-cooperative behavior and also same level of information availability for individual players. According to the results an optimal allocation policy for each water user can be developed in addition to the optimal policy of the reservoir system. Also the proposed model is compared with two alternative dynamic models of reservoir optimization, namely Stochastic Dynamic Programming (SDP) and Fuzzy-State Stochastic Dynamic programming (FSDP). The proposed modeling procedures can be applied as an appropriate tool for reservoir operation, considering the interaction among the water users as well as the water users and reservoir operator.  相似文献   

8.

The limitation of freshwater resources and the growing demand for water, make the issue of water resource development planning and water allocation among stakeholders even more important. Ideally, water allocation should be economically efficient and socially equitable. In this study, a water allocation model is presented in an integrated framework that considers the interaction of water supply and demand according to economic and social factors. To achieve this, a reliability-based multi-objective optimization - simulation approach has been employed. The objective functions of the problem are: 1) maximizing GDP from agricultural sectors and 2) maximizing social equality in different provinces of the basin (measured using the Williamson coefficient). The fair development and allocation among the shared provinces in the basin can reduce conflicts in the region. Karkheh basin has been considered as a case study and decision variables of the problem are area under cultivation of agricultural development sectors in different provinces. The results show that, without harming the income of the agricultural sector, the spatial distribution of development projects can be done in such a way that equality (according to income level and the number of people working in each province) is achieved. One of the solutions of Pareto front compared to previous studies shows that, in addition to an increase of about 12% of the objective function 1 (GDP), the value of the objective function 2 (Williamson coefficient) decreased from 1.19 to 0.98. This indicates a decrease in income inequality among the provinces of the basin.

  相似文献   

9.
A Model for Optimal Allocation of Water to Competing Demands   总被引:4,自引:3,他引:1  
The present study develops a simple interactive integrated water allocation model (IWAM), which can assist the planners and decision makers in optimal allocation of limited water from a storage reservoir to different user sectors, considering socio-economic, environmental and technical aspects. IWAM comprises three modules—a reservoir operation module (ROM), an economic analysis module (EAM) and a water allocation module (WAM). The model can optimize the water allocation with any of two different objectives or two objectives together. The two individual objectives included in the model are the maximization of satisfaction and the maximization of net economic benefit by the demand sectors. Weighting technique (WT) or simultaneous compromise constraint (SICCON) technique is used to convert the multi-objective decision-making problem into a single objective function. The single objective functions are optimized using linear programming. The model applicability is demonstrated for various cases with a hypothetical example.  相似文献   

10.
为在水环境保护优先的前提下保障水资源持续利用,通过分析水资源经济利用主体与水环境保护主体的目标冲突,建立水资源利用与排污控制的讨价还价博弈模型与主从博弈模型,提出水资源利用与排污控制互馈决策的协调方法,并对比分析均衡解与非劣解的内涵与关系.以洞庭湖四口河系地区为研究区域,结果表明:讨价还价博弈和主从博弈方法的均衡解均在...  相似文献   

11.

In this paper, by using the concept of Conditional Value at Risk (CVaR), a Leader-Follower game (LFG) based multi-objective optimization model is developed to determine the optimum 12-month operation policy of a reservoir in potential future dry periods. The minimization of CVaRs of storage loss and agricultural and environmental deficits along with maximization of planned allocation to agricultural sector are considered as leader’s objectives, while the followers try to maximize their share of water rights using Nash bargaining (NB) method. This framework is then used to model the operation policy of Dorudzan basin in Fars province, southwestern Iran. Water demand and daily climate data in the period of 2003 to 2015 for this basin, as well as future projections from fifteen IPCC-AR4 global circulation models (GCMs) for 2018–2030 under A2, B1 and A1B emission scenarios are considered to evaluate future dam operation policies. Future projections are downscaled using the LARS-WG model, which then feeds the HMETS watershed model to simulate the corresponding reservoir inflow time-series. Thereafter, three-hundred 12-month rainfall, evaporation and inflow time series with least inflow volume are used as input for the optimization model, which is solved using NSGA-II and GA algorithms. The results show while the model can determine the operation policy that keeps the associated risks in the acceptable range, it can satisfy the followers demands with respect to the available resources. The results also show that the agricultural sector of the study area can be hugely affected by potential future droughts.

  相似文献   

12.
A multi-objective optimization technique for the operation of an irrigation reservoir is presented in this paper. The study deals with two different objective functions (OF): the minimization of reservoir release deficit from the irrigation demand (OF1) and the maximization of net benefit by the demand sector (OF2). In the first step, monthly optimization of each individual objective was performed with a deterministic non-linear programming (NLP) algorithm, that gave the lower and upper bounds for the multi-objective analysis. In the second step, multi-objective optimization was performed through the Constraint method that operates by optimising the objective function OF1, while the other (OF2) was constrained to satisfy release strategies generated by the optimization. Non-dominated set of release strategies is generated by parametrically varying the bounds of the constraints obtained from the individual optimal solutions. In the third step, the interactive analytical Step method was applied to find the best compromise solution, between the two OFs, by minimizing the distance of each non-dominated solution to an ideal solution that represents the utopian optimum for both OF1 and OF2. Furthermore, the interactive approach allows to improve the performance of the reservoir in terms of compromise irrigation releases, by changing the OF values until the satisfaction of predetermined criteria fixed by the planners and decision makers. The proposed water allocation model was applied to the Pozzillo reservoir operation, that supplies the Catania Plain irrigation area (Eastern Sicily).  相似文献   

13.
Demands growth and water resources limitation, enforce water sector policy makers to integrate water supply–demand interactions in a coherent framework for efficient water allocation. Water supply–demand interaction, changes long-term trend of water demands, which in turn has a substantial influence on water allocation. Researches on water allocation modeling lack adequate projection of relationship between water supply and demand. Socio-economic factors representing water allocation stakeholders’ benefits, account for the main share of water supply–demand interaction. Identification, representation and consideration of these factors in a water allocation model, is the main limitation of researches on this issue. In this paper a new long-term water allocation model at basin level is developed and introduced. This model considers water supply–demand interaction in agriculture and industry sectors, by use of socio-economic parameters; such as, production, cultivated land area, revenue and employment. The model main advantage is its ability to reflect the interrelationship between essential hydro-system and supply–demand components. It can explore both socio-economic and water allocation consequences of various policy choices. The model is used to assess two different development policies at basin level. The first one is fourth 5-year development plan of Iran, which fixes predefined growth rate for different sectors. The second one assumes the present state continues up to the end of planning horizon. A typical multi-reservoir water basin is modeled and analyzed for two policies. Indices that summarize long-term state of hydro-system and stakeholders are defined and used in policies assessment and decision making. Results of these assessments show fourth 5-year development policy provides opportunities for substantial improvement in water allocation and stakeholders’ benefits.  相似文献   

14.
This study has proposed a methodology by enhancing an interactive algorithm to multi-objective optimization problems with interval parameters, in an attempt to reach the tradeoff between quality and reliability of the resultant optimum solutions. The earlier algorithm could turn into a prolonged procedure that deals with several players with different aspirations at different reliability, or risk, levels under non-deterministic conditions. Hence, it is not a pertinent approach to solve problems of water allocation between competing parties. The enhanced methodology aims to alleviate the burdens of the procedure and generate a unique set of solutions (i.e., near-Pareto-optimal alternatives), instead of a myriad of compromise solution sets. We have investigated a real-world hydro-environmental problem, the allocation of water between Dorudzan-Korbal irrigation networks and Bakhtegan Lake in Fars Province, Iran to assess feasibility of this methodology. In order to reach a consensus concerning the stakeholders’ individual preferences, we identified the compromise alternatives from the obtained sets of non-dominated solutions by taking advantage of various social choice rules and the Nash bargaining model. The results demonstrated that the developed methodology could incorporate the risk of system constraints violations (i.e., planning reliability under uncertainty) into the process of approximating the optimal tradeoff set of solutions. It also gave policymakers a chance to acquire perception into the potentially best compromise for land and water allocation schemes regarding the preference profiles of the involved interest groups.  相似文献   

15.
The efficient utilization of hydropower resources play an important role in the economic sector of power systems, where the hydroelectric plants constitute a significant portion of the installed capacity. Determination of daily optimal hydroelectric generation scheduling is a crucial task in water resource management. By utilizing the limited water resource, the purpose of hydroelectric generation scheduling is to specify the amount of water releases from a reservoir in order to produce maximum power, while the various physical and operational constraints are satisfied. Hence, new forms of release policies namely, BSOPHP, CSOPHP, and SHPHP are proposed and tested in this research. These policies could only use in hydropower reservoir systems. Meanwhile, to determine the optimal operation of each policy, real coded genetic algorithm is applied as an optimization technique and maximizing the total power generation over the operational periods is chosen as an objective function. The developed models have been applied to the Cameron Highland hydropower system, Malaysia. The results declared that by using optimal release policies, the output of power generation is increased, while these policies also increase the stability of reservoir system. In order to compare the efficiency of these policies, some reservoir performance indices such as reliability, resilience, vulnerability, and sustainability are used. The results demonstrated that SHPHP policy had the highest performance among the tested release policies.  相似文献   

16.
The escalating world population has led to a drastic increase in water demand in the municipal and drinking water, agriculture and industry sectors. This situation necessitates application of effective measures for the optimal and efficient management of water resources. With this respect, a two-objective socioeconomic model (aimed at job creation) has been presented in this study for the optimum allocation of water resources to industry, agriculture and municipal water sectors. In the agriculture sector, the production function of each product has been determined and then, based on the production functions, areas under cultivation, product yield and the income obtained from each product, the combined objective function has been specified. In the industry sector, since water demand is a function of the amount of produced products, price of supplied water and the price of other supplies, the demand function of this sector was determined regionally. Also, considering the existing necessity in meeting the municipal water requirement, the total amount of water needed by this sector was fully allocated. Then by using two meta-heuristic algorithms, i.e. genetic algorithm (GA) and particle swarm optimization (PSO), the objective functions were maximized and the water resources were optimally allocated between agriculture and industry sectors and the results were compared. Ultimately, comparing the results gained by PSO and GA algorithms, PSO with an economic and profit growth of 54 % and a 13 % rise in employment relative to the base condition, turned out to be more efficient in this application.  相似文献   

17.
This study extends the PSO-MODSIM model, integrating particle swarm optimization (PSO) algorithm and MODISM river basin decision support system (DSS) to determine optimal basin-scale water allocation, in two aspects. The first is deriving hydrologic state-dependent (conditional) operating rules to better account for drought and high-flow periods, and the second is direct, explicit consideration of sustainability criteria in the model’s formulation to have a better efficiency in basin-scale water allocation. Under conditional operating rules, the operational parameters of reservoir target storage levels and their priority rankings were conditioned on the hydrologic state of the system in a priority-based water allocation scheme. The role of conditional operating rules and policies were evaluated by comparing water shortages associated with objective function values under unconditional and conditional operating rules. Optimal basin-scale water allocation was then evaluated by incorporating reliability, vulnerability, reversibility and equity sustainability indices into the PSO objective function. The extended model was applied for water allocation in the Atrak River Basin, Iran. Results indicated improved distribution of water shortages by about 7.5% using conditional operating rules distinguishing dry, normal and wet hydrologic states. Alternative solutions with nearly identical objective function values were found with sustainability indices included in the model.  相似文献   

18.
This study proposes intelligent water resources allocation strategies for multiple users through hybrid artificial intelligence techniques implemented for reservoir operation optimization and water shortage rate estimation. A two-fold scheme is developed for (1) knowledge acquisition through searching input–output patterns of optimal reservoir operation by optimization methods and (2) the inference system through mapping the current input pattern to estimate the water shortage rate by artificial neural networks (ANNs). The Shihmen Reservoir in northern Taiwan is the study case. We first design nine possible water demand conditions by investigating the changes in historical water supply. With the nine designed conditions and 44-year historical 10-day reservoir inflow data collected during the growth season (3 months) of the first paddy crop, we first conduct the optimization search of reservoir operation by using the non-dominated sorting genetic algorithm-II (NSGA-II) in consideration of agricultural and public water demands simultaneously. The simulation method is used as a comparative model to the NSGA-II. Results demonstrate that the NSGA-II can suitably search the optimal water allocation series and obtain much lower seasonal water shortage rates than those of the simulation method. Then seasonal water shortage rates in response to future water demands for both sectors are estimated by using the adaptive network fuzzy inference system (ANFIS). The back-propagation neural network (BPNN) is adopted as a comparative model to the ANFIS. During model construction, future water demands, predicted monthly inflows (or seasonal inflow) of the reservoir in the next coming quarter and historical initial reservoir storages configure the input patterns while the optimal seasonal water shortage rates obtained from the NSGA-II serve as output targets (training targets) for both neural networks. Results indicate that the ANFIS and the BPNN models produce almost equally good performance in estimating water shortage rates, yet the ANFIS model produces even better stability. The reliability of the proposed scheme is further examined by scenario analysis. The scenario analysis indicates that an increase in public water demand or a decrease in agricultural water demand would bring more impacts of water supply on agricultural sectors than public sectors. Similarly, a bigger decrease in inflow amount would obviously bring more influence on agricultural sectors than public one. Consequently, given predicted inflow, decision makers can pre-experience the possible outcomes in response to competing water demands through the estimation models in order to determine adequate water supply as well as preparedness measures, if needed, for drought mitigation.  相似文献   

19.
Water Distribution Scenarios in the Mexican Valley   总被引:3,自引:3,他引:0  
Mexican Valley is one of the Mexico’s most critical areas of water supply, the groundwater resources are overexploited at a rate of 100% or more, generating ground sinking up to 0.4 cm/year in some areas. Water shortage in this area is already at an alarmingly critical level. The situation is expected to worsen due to increasing domestic, industrial and agricultural water demands. The limited water resources, the competing users and the combination of several water sources with different qualities require the development of an adequate water distribution system. The objective of this work is to generate a water distribution model as a three-person linear game in which the users are the players, the supplied amounts from five sources are the strategies, and the total water supplies are the payoffs. Since the available water supplies are lower than the total demands from the users, a tradeoff has to be determined. The nonsymmetric Nash bargaining method is used, which requires the solution of a special optimization problem with nonlinear objective function and linear constraints. For all water distribution scenarios there is no water distribution strategy that satisfies the domestic demand with the current system. Therefore investments and further developments are needed in combination with more efficient water usage by the three sectors in the near future to secure the satisfaction of domestic users. A market driven water pricing policy also would give an incentive to the users for more efficient usage of water.  相似文献   

20.
李新  程会强 《中国水利》2009,(13):12-14
流域水资源的多区域共享性会造成水资源相关配置主体产生利益冲突,协商仲裁机制是解决平等主体间利益矛盾方式之一。从降低取水成本及优化水权配置角度出发,设计了协商仲裁机制模型.利用纳什公理化模型求得各区域用水量的纳什协商解。在证明取水公平的情况下,该协商仲裁机制的设计既能降低各地区的取水成本,增加各地区的取水效用,又能够节约流域整体的取水成本,提高流域水权配置效率,实现全流域水资源配置的优化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号