首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
为解决水面垃圾检测中存在目标形状尺度差异大, 难以区分背景以及目标偏小的问题, 本文提出了一种SPMYOLOv3目标检测算法来实现对水面垃圾的检测. 首先, 对收集到的水面垃圾数据集进行标注, 使用改进的K-means算法对数据集重新聚类, 得到与数据集更匹配的先验框. 其次, 在YOLOv3的主干网络后添加SE-PPM模块, 加强目标的特征信息, 保证目标尺度不变且保留全局信息. 再使用多向金字塔网络对不同尺度的特征图进行融合, 获得携带更加丰富的上下文信息的特征图. 最后使用在损失函数中使用focal loss计算负样本的置信度损失, 抑制了YOLOv3中正负样本不均衡问题. 改进后的算法在水面垃圾数据集上的实验结果表明, 相比于原YOLOv3算法检测精度提升了3.96%.  相似文献   

2.
针对实验室设备的检测识别问题,提出一种改进YOLOv4算法。针对K-means聚类算法在尺度分布不均匀场景下的局限性,提出一种将数据集标注框按大小划分区间,分别聚类的IK-means++算法;在主干网络中引入通道注意力模块,提出一种阶梯状特征融合网格加强特征融合能力;以计算机实验室为例构建数据集进行训练。实验结果表明,IK-means++算法聚类效果得到有效提升;改进后的YOLOv4算法检测精度更高,模型复杂度更低,速度更快。  相似文献   

3.
由于足球比赛场景中密集人群、移动小目标居多, YOLOv3算法存在检测精确度较低且模型参数量较大等问题, 使其无法部署在资源算力有限的移动设备上, 本文提出了一种基于改进YOLOv3的行人检测方法, 将Darknet-53主干特征提取网络替换为更加高效且轻量化的GhostNet网络; 同时选取了4个尺度的检测分支层并采用K-means++算法改善anchor box的聚类效果; 添加空间金字塔池化对输入图像实现相同大小的输出; 提出CIoU损失函数来计算目标定位损失值; 添加heatmap热力图可视化并在训练中使用Mosaic数据增强. 实验结果表明, YOLOv3-GhostNet在VOC融合数据集上mAP达到90.97%的同时相比YOLOv3算法提高了1.75%, 参数量减少了约81.4%且实时检测速率提高了约1.5倍, 在小型移动设备上表现出不错的检测效果.  相似文献   

4.
车辆行驶过程中, 对前方目标的检测速度和检测精度一直是自动驾驶领域研究的重点. 针对现有的目标检测算法模型, 在复杂交通环境下, 传统模型面对重叠目标容易导致误检和漏检的情况发生, 大幅度提高检测精度又会造成计算量过大导致处理速度缓慢, 实时性下降的问题. 本文提出基于YOLOv5模型的改进算法. 首先采用MobileNetV3网络替换原模型中主干网络C3的方案, 实现网络仍保持轻量化的同时, 提高模型响应速度. 其次, 提出一种非极大值抑制算法Adaptive-EIoU-NMS来提高重叠目标的识别精度. 最后采用K-means++聚类算法替换原有聚类算法, 生成更精确的锚框. 实验结果表明, 改进后的模型平均检测精度达到90.1%, 检测速度达到89 f/s. 实验结果可以证实, 改进后的模型针对复杂场景检测精度和检测速度都有显著提高.  相似文献   

5.
为解决YOLOv4在目标检测任务中检测速度低、模型参数多等问题,提出一种改进YOLOv4的目标检测算法。将YOLOv4主干网络中的CSPDarknet53替换成Mobilenet用以增强YOLOv4的特征提取网络,PANet原有的3×3标准卷积被深度可分离卷积取代,以降低计算负荷,从而提高识别速度,减少模型参数。然后使用K-means+〖KG-*3〗+算法对由8565张图像组成的数据集进行anchor维度聚类,以提升算法精度。同时,搭建行人口罩佩戴及人体测温拍摄系统用以在人群密集场所中执行疫情防控任务。在保证YOLOv4-Mobilenet网络精度的前提下,相较于原算法FPS提升200%、模型参数减少82%。改进后的模型平均每秒可检测67张图片,可以胜任实际应用中的口罩佩戴检测任务,结果表明该模型检测效果好、鲁棒性较强。  相似文献   

6.
YOLOv4目标检测算法主干网络庞大且参数量和计算量过多,难以部署在算力和存储资源有限的移动端嵌入式设备上。提出一种改进的YOLOv4目标检测算法,使用轻量化的ShuffleNet V2网络作为主干特征提取网络,更换模型激活函数及扩大卷积核,同时将YOLOv4网络中的普通卷积替换为深度可分离卷积,降低算法参数量、计算量和模型占用空间。在ShuffleNet V2网络结构的改进过程中分析并剪裁其基本组件,利用2个3 × 3卷积核级联的方式增强网络感受野,并使用Mish激活函数进一步提升网络检测精度和模型推理速度。在GPU平台和VisDrone 2020数据集上的实验结果表明,与YOLOv4算法相比,改进的YOLOv4算法在牺牲1.8个百分点的检测精度情况下,提高了27%的检测速度,压缩了23.7%的模型容量,并且能够充分发挥ZYNQ平台并行高速数据处理及低功耗的优势。  相似文献   

7.
针对白细胞数据样本少、类间差别小及目标尺寸小导致的检测精度低、效果不佳等问题,提出一种基于改进YOLOv5的白细胞检测算法YOLOv5-CHE.在主干特征提取网络的卷积层中添加坐标注意力机制,以提升算法的特征提取能力;使用四尺度特征检测,重新获取锚点框,增加浅层检测尺度,来提高小目标的识别精度;改变边框回归损失函数,以...  相似文献   

8.
裂缝检测对于建筑的维修和加固、延长其使用寿命具有重要意义。针对建筑裂缝种类多和尺寸小造成裂缝检测精度低、速度慢的问题,提出了一种改进的YOLOv5裂缝检测算法,在提高检测裂缝精度的同时也提升了检测裂缝的速度。首先,引入轻量级网络Xception对主干网络轻量化,减少主干网络参数量以提升检测裂缝的速度;其次,使用空洞空间金字塔池化ASPP(Atrous Spatial Pyramid Pooling)模块替换SPP(Spatial Pyramid Pooling)模块,扩大感受野范围,加强主干网络提取裂缝特征的能力,避免因对主干网络轻量化而造成检测裂缝的精度降低;最后,添加SA(Shuffle Attention)注意力机制,进一步加强网络提取裂缝特征的能力,提高裂缝检测的精度。通过在自制数据集上进行的实验表明,改进的算法mAP比原算法提高了1.6%,速度为50.8 f/s,比原算法提高了2.7 f/s,满足建筑裂缝检测的精度和实时性要求,同时将改进算法与Faster R-CNN、Mobile-SSD、YOLOv4-tiny等算法进行对比,证明了该算法的优越性,更适合部署到硬件平台上。  相似文献   

9.
针对火灾检测中小目标检测率低、复杂场景下检测精度低和检测不及时等问题, 提出了一种改进YOLOv3的火灾检测算法. 首先, 通过改进的K-means聚类算法重新获取更符合火焰和烟雾尺寸的anchor; 其次在Darknet-53后添加空间金字塔池化, 提升了网络的感受野进而增强了网络对小尺度目标的检测能力; 然后通过CIoU改进损失函数, 在计算坐标误差时考虑中心和宽高坐标两者的相关性, 加快了损失函数的收敛; 最后使用mosaic数据增强丰富了待检测物体的背景. 在自制的数据集上训练并测试, 实验结果表明: 改进后的算法比YOLOv3火焰的AP从94%提升至98%, 烟雾的AP从82%提升至94%, 平均检测速度从31 fps提升至43 fps, 相比Faster R-CNN、SDD等算法也有更高的mAP和更快的检测速度. 因此, 改进后的算法能够更有效地进行火灾预警.  相似文献   

10.
基于改进YOLOv3算法的公路车道线检测方法   总被引:2,自引:0,他引:2  
针对YOLOv3算法在检测公路车道线时存在准确率低和漏检概率高的问题, 提出一种改进YOLOv3网络结构的公路车道线检测方法.该方法首先将图像划分为多个网格, 利用K-means++聚类算法, 根据公路车道线宽高固有特点, 确定目标先验框数量和对应宽高值; 其次根据聚类结果优化网络Anchor参数, 使训练网络在车道线检测方面具有一定的针对性; 最后将经过Darknet-53网络提取的特征进行拼接, 改进YOLOv3算法卷积层结构, 使用GPU进行多尺度训练得到最优的权重模型, 从而对图像中的车道线目标进行检测,并选取置信度最高的边界框进行标记.使用Caltech Lanes数据库中的图像信息进行对比试验, 实验结果表明, 改进的YOLOv3算法在公路车道线检测中平均准确率(Mean average precision, mAP)为95%, 检测速度可达50帧/s, 较YOLOv3原始算法mAP值提升了11%, 且明显高于其他车道线检测方法.  相似文献   

11.
垃圾分类问题的解决方法目前主要依靠垃圾处理厂人工分拣,其工作环境较差且自动化程度不高.为了提高垃圾分拣的速度与精度,以及为自动垃圾分拣设备提供算法解决参考方案,文章提出一种面向低功耗设备的轻量级垃圾目标检测算法Ghost-YOLO,该算法在保证轻量化的同时具有较高的垃圾检测精度.Ghost-YOLO算法是基于YOLOv...  相似文献   

12.
针对在光照、多车辆和低分辨率等复杂场景下车牌定位困难、检测速度慢和精度低等问题,提出了一种改进YOLOv3的方法。采用K-means++方法对实例的标签信息进行聚类分析获取新的anchor尺寸,通过改进后的精简特征提取网络(DarkNet41)来提高模型的检测效率并降低计算消耗。此外,改进了多尺度特征融合,由3尺度预测增加至4尺度预测并在检测网络中加入了改进后的Inception-SE结构来提高检测的精度,选取了CIoU作为损失函数。预处理方面用MSR(Multi-Scale Retinex)算法对数据进行增强。实验分析表明,采用该算法mAP(均值平均精度)达到了98.84%,检测速度达到36.4帧/s,与YOLOv3模型以及其他算法相比具有更好的准确性和实时性。  相似文献   

13.
为了满足锂离子电池电极缺陷检测精度与实时性的需求,解决电极图像背景噪声复杂、缺陷微小且对比度低等问题,提出一种基于注意力机制与多尺度特征融合的电极缺陷YOLO检测算法.在YOLOv4的基础上,首先,将SE(squeeze-and-excitation)注意力模块嵌入特征提取主干网络中,区分feature map中不同通道的重要性,强化目标区域的关键特征,提高网络的检测精度;其次,加入融合空洞卷积的池化金字塔(ASPP)结构,增大网络感受野的同时最大程度地保留多尺度特征信息,提高算法对小目标的检测性能;然后,设计一种多尺度稠密特征金字塔,在三尺度特征图的基础上增加一个浅层特征,采用稠密连接的方式融合特征,提升浅层细节特征与高级语义信息的融合能力,增强对微小缺陷特征的提取;最后,采用$ K $-means++算法聚类先验框,引入focal loss损失函数增大小目标样本的损失权重,有效提高网络学习的收敛速度.实验结果表明,所提算法较原YOLOv4模型的mAP值提升6.42%,较其他常用算法综合性能上有着较大的优势,可较好地满足实际工业生产的实时监测需求.  相似文献   

14.
为解决目标检测任务中小目标检测精度低,错检、漏检率高等问题,提出一种scSE-IYOLOv4的改进YOLOv4的小目标检测算法.实验使用VEDAI小目标数据集,采用K-means++算法对目标样本进行锚定框优化,以提升算法精度.在YOLOv4算法的基础上,分别研究分析了scSE注意力模块嵌入至模型不同位置以及在模型颈部...  相似文献   

15.
针对过去无人机搭载嵌入式设备巡检森林火灾精确率低、适应性差和软硬件限制高等问题,提 出一种基于 YOLOv5s 的轻量化森林火灾目标检测算法。通过将 YOLOv5s 的骨干网络替换为轻量化网络 Shufflenetv2,并以通道重组的思想,让骨干网络对图片信息的提取效率变得更快,在保持网络精度的同时保证 检测速度;接着在 Backbone 与 Neck 的连接处加入为轻量化网络设计的 CA 位置注意力模块,可将图片不同的 位置信息聚合到通道中,使被检对象关注度得以提高;最后在预测部分使用 CIOU 损失函数,能够更好的优化 矩形框的长宽比和更快加速模型收敛。算法部署在嵌入式系统 Jetson Xavier NX 上的结果显示,改进后的网络 模型大小与对比实验方法相比,最多减少了 98%,准确率(Precision)达到 92.6%,精确率(AP)达到 95.3%,帧率 (FPS)提升到 132 帧每秒,能满足在白天、黑夜或视野良好等情况下对森林火灾的实时性预防与检测,并具有 良好的准确率和鲁棒性。  相似文献   

16.
杨毅  桑庆兵 《计算机工程》2022,48(12):288-295
织物瑕疵检测是纺织行业保证产品质量的重要环节,针对织物瑕疵检测中存在小目标瑕疵检测困难、不同种类瑕疵长宽比差异大、对实时性要求高等问题,提出一种新的轻量化织物瑕疵检测算法。以YOLOv4网络为基础,使用轻量化网络MobileNetv2为主干网络,有效减少模型参数总量与运算量,以满足实时性需求。在MobileNetv2的逆残差结构中加入CoordAttention注意力模块,将空间精确位置信息嵌入到通道注意力中,增强网络聚焦小目标特征的能力。使用自适应空间特征融合(ASFF)网络改进路径聚合网络(PANet),使模型通过学习获得多尺度特征图的融合权重,从而充分利用浅层特征与深层特征,提高算法对小目标瑕疵的检测精度。采用K-means++算法确定先验框尺寸,并用Focal Loss函数修改模型损失函数,降低正、负样本不平衡对检测结果的影响,解决不同种类瑕疵长宽比差异大及类别不平衡的问题。实验结果表明,相较于YOLOv4算法,所提算法的平均精度均值提高了2.3个百分点,检测速度提升了12 frame/s,能较好地应用于织物瑕疵检测。  相似文献   

17.
为了准确且实时地检测到交通标志指示牌,减少交通事故的发生和推动智慧交通的发展,针对现有的道路交通标志检测模型存在的精度不足、权重文件大、检测速度慢的问题,设计了一种基于计算机视觉技术的改进YOLOv5s检测算法YOLOv5s-GC.首先,使用copy-paste进行数据增强后再送入网络进行训练,加强对小目标的检测能力;然后,引入Ghost来构建网络,削减原网络的参数和计算量,实现轻量化模型;最后,将坐标注意力机制(coordinate attention)融合到骨干网络里,增强对待测目标的表示和定位能力,提高识别精度.实验结果表明,YOLOv5s-GC模型相比于原YOLOv5s模型,参数数目减少了12%,检测速度提高了22%,平均精度达到了94.2%,易于部署且能满足实际自动驾驶场景中对识别交通标志的速度和准确度要求.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号