首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plant respiratory burst oxidase homolog (rboh) genes appear to play crucial roles in plant development, defense reactions and hormone signaling. In this study, a total of seven rboh genes from grape were identified and characterized. Genomic structure and predicted protein sequence analysis indicated that the sequences of plant rboh genes are highly conserved. Synteny analysis demonstrated that several Vvrboh genes were found in corresponding syntenic blocks of Arabidopsis, suggesting that these genes arose before the divergence of the respective lineages. The expression pattern of Vvrboh genes in different tissues was assessed by qRT-PCR and two were constitutively expressed in all tissues tested. The expression profiles were similarly analyzed following exposure to various stresses and hormone treatments. It was shown that the expression levels of VvrbohA, VvrbohB and VvrbohC1 were significantly increased by salt and drought treatments. VvrbohB, VvrbohC2, and VvrbohD exhibited a dramatic up-regulation after powdery mildew (Uncinula necator (Schw.) Burr.) inoculation, while VvrbohH was down-regulated. Finally, salicylic acid treatment strongly stimulated the expression of VvrbohD and VvrbohH, while abscisic acid treatment induced the expression of VvrbohB and VvrbohH. These results demonstrate that the expression patterns of grape rboh genes exhibit diverse and complex stress-response expression signatures.  相似文献   

2.
3.
4.
Grape (Vitis vinifera) is an important horticultural crop that can be used to make juice and wine. However, the small size of the berry limits its yield. Cultivating larger berry varieties can be an effective way to solve this problem. As the largest family of auxin early response genes, SAUR (small auxin upregulated RNA) plays an important role in the growth and development of plants. Berry size is one of the important factors that determine grape quality. However, the SAUR gene family’s function in berry size of grape has not been studied systematically. We identified 60 SAUR members in the grape genome and divided them into 12 subfamilies based on phylogenetic analysis. Subsequently, we conducted a comprehensive and systematic analysis on the SAUR gene family by analyzing distribution of key amino acid residues in the domain, structural features, conserved motifs, and protein interaction network, and combined with the heterologous expression in Arabidopsis and tomato. Finally, the member related to grape berry size in SAUR gene family were screened. This genome-wide study provides a systematic analysis of grape SAUR gene family, further understanding the potential functions of candidate genes, and provides a new idea for grape breeding.  相似文献   

5.
6.
Brassica napus and its diploid progenitors (B. rapa and B. oleracea) are suitable for studying the problems associated with polyploidization. As an important anti-stress protein, RCI2 proteins widely exist in various tissues of plants, and are crucial to plant growth, development, and stress response. In this study, the RCI2 gene family was comprehensively identified and analyzed, and 9, 9, and 24 RCI2 genes were identified in B. rapa, B. oleracea, and B. napus, respectively. Phylogenetic analysis showed that all of the identified RCI2 genes were divided into two groups, and further divided into three subgroups. Ka/Ks analysis showed that most of the identified RCI2 genes underwent a purifying selection after the duplication events. Moreover, gene structure analysis showed that the structure of RCI2 genes is largely conserved during polyploidization. The promoters of the RCI2 genes in B. napus contained more cis-acting elements, which were mainly involved in plant development and growth, plant hormone response, and stress responses. Thus, B. napus might have potential advantages in some biological aspects. In addition, the changes of RCI2 genes during polyploidization were also discussed from the aspects of gene number, gene structure, gene relative location, and gene expression, which can provide reference for future polyploidization analysis.  相似文献   

7.
8.
Carotenoid cleavage dioxygenases (CCDs) catalyzes the cleavage of various carotenoids into smaller apocarotenoids which are essential for plant growth and development and response to abiotic stresses. CCD family is divided into two subfamilies: 9-cis epoxycarotenoid dioxygenases (NCED) family and CCD family. A better knowledge of carotenoid biosynthesis and degradation could be useful for regulating carotenoid contents. Here, 23 CCD genes were identified from the Populus trichocarpa genome, and their characterizations and expression profiling were validated. The PtCCD members were divided into PtCCD and PtNCED subfamilies. The PtCCD family contained the PtCCD1, 4, 7, and 8 classes. The PtCCDs clustered in the same clade shared similar intron/exon structures and motif compositions and distributions. In addition, the tandem and segmental duplications resulted in the PtCCD gene expansion based on the collinearity analysis. An additional integrated collinearity analysis among poplar, Arabidopsis, rice, and willow revealed the gene pairs between poplar and willow more than that between poplar and rice. Identifying tissue-special expression patterns indicated that PtCCD genes display different expression patterns in leaves, stems, and roots. Abscisic acid (ABA) treatment and abiotic stress suggested that many PtCCD genes are responsive to osmotic stress regarding the comprehensive regulation networks. The genome-wide identification of PtCCD genes may provide the foundation for further exploring the putative regulation mechanism on osmotic stress and benefit poplar molecular breeding.  相似文献   

9.
Annexin (Ann) is a polygenic, evolutionarily conserved, calcium-dependent and phospholipid-binding protein family, which plays key roles in plant growth, development, and stress response. However, a comprehensive understanding of CaAnn genes of pepper (Capsicum annuum) at the genome-wide level is limited. Based on the available pepper genomic information, we identified 15 members of the CaAnn gene family. Phylogenetic analysis showed that CaAnn proteins could be categorized into four different orthologous groups. Real time quantitative RT-PCR analysis showed that the CaAnn genes were tissue-specific and were widely expressed in pepper leaves after treatments with cold, salt, and drought, as well as exogenously applied MeJA and ABA. In addition, the function of CaAnn9 was further explored using the virus-induced gene silencing (VIGS) technique. CaAnn9-silenced pepper seedlings were more sensitive to salt stress, reflected by the degradation of chlorophyll, the accumulation of reactive oxygen species (ROS), and the decrease of antioxidant defense capacity. This study provides important information for further study of the role of pepper CaAnn genes and their coding proteins in growth, development, and environmental responses.  相似文献   

10.
11.
The SWEET (Sugars Will Eventually be Exported Transporter) proteins are a novel family of sugar transporters that play key roles in sugar efflux, signal transduction, plant growth and development, plant–pathogen interactions, and stress tolerance. In this study, 22 ClaSWEET genes were identified in Citrullus lanatus (Thunb.) through homology searches and classified into four groups by phylogenetic analysis. The genes with similar structures, conserved domains, and motifs were clustered into the same groups. Further analysis of the gene promoter regions uncovered various growth, development, and biotic and abiotic stress responsive cis-regulatory elements. Tissue-specific analysis showed most of the genes were highly expressed in male flowers and the roots of cultivated varieties and wild cultivars. In addition, qRT-PCR results further imply that ClaSWEET proteins might be involved in resistance to Fusarium oxysporum infection. Moreover, a significantly higher expression level of these genes under various abiotic stresses suggests its multifaceted role in mediating plant responses to drought, salt, and low-temperature stress. The genome-wide characterization and phylogenetic analysis of ClaSWEET genes, together with the expression patterns in different tissues and stimuli, lays a solid foundation for future research into their molecular function in watermelon developmental processes and responses to biotic and abiotic stresses.  相似文献   

12.
13.
14.
15.
Members of the Mi14-3-3 gene family interact with target proteins that are widely involved in plant hormone signal transduction and physiology-related metabolism and play important roles in plant growth, development and stress responses. In this study, 14-3-3s family members are identified by the bioinformatic analysis of the mango (Mangifera indica L.) genome. The gene structures, chromosomal distributions, genetic evolution, and expression patterns of these genes and the physical and chemical properties and conserved motifs of their proteins are analysed systematically. The results identified 16 members of the 14-3-3 genes family in the mango genome. The members were not evenly distributed across the chromosomes, and the gene structure analysis showed that the gene sequence length and intron number varied greatly among the different members. Protein sequence analysis showed that the Mi14-3-3 proteins had similar physical and chemical properties and secondary and tertiary structures, and protein subcellular localization showed that the Mi14-3-3 family proteins were localized to the nucleus. The sequence analysis of the Mi14-3-3s showed that all Mi14-3-3 proteins contain a typical conserved PFAM00244 domain, and promoter sequence analysis showed that the Mi14-3-3 promoters contain multiple hormone-, stress-, and light-responsive cis-regulatory elements. Expression analysis showed that the 14-3-3 genes were expressed in all tissues of mango, but that their expression patterns were different. Drought, salt and low temperature stresses affected the expression levels of 14-3-3 genes, and different 14-3-3 genes had different responses to these stresses. This study provides a reference for further studies on the function and regulation of Mi14-3-3 family members.  相似文献   

16.
17.
Brassinosteroid-related genes are involved in regulating plant growth and stress responses. However, systematic analysis is limited to Gramineae species, and their roles in plant architecture and salt stress remain unclear. In this study, we identified brassinosteroid-related genes in wheat, barley, maize, and sorghum and investigated their evolutionary relationships, conserved domains, transmembrane topologies, promoter sequences, syntenic relationships, and gene/protein structures. Gene and genome duplications led to considerable differences in gene numbers. Specific domains were revealed in several genes (i.e., HvSPY, HvSMOS1, and ZmLIC), indicating diverse functions. Protein-protein interactions suggested their synergistic functions. Their expression profiles were investigated in wheat and maize, which indicated involvement in adaptation to stress and regulation of plant architecture. Several candidate genes for plant architecture (ZmBZR1 and TaGSK1/2/3/4-3D) and salinity resistance (TaMADS22/47/55-4B, TaGRAS19-4B, and TaBRD1-2A.1) were identified. This study is the first to comprehensively investigate brassinosteroid-related plant architecture genes in four Gramineae species and should help elucidate the biological roles of brassinosteroid-related genes in crops.  相似文献   

18.
19.
PIN-FORMED (PIN) genes play a crucial role in regulating polar auxin distribution in diverse developmental processes, including tropic responses, embryogenesis, tissue differentiation, and organogenesis. However, the role of PIN-mediated auxin transport in various plant species is poorly understood. Currently, no information is available about this gene family in wheat (Triticum aestivum L.). In the present investigation, we identified the PIN gene family in wheat to understand the evolution of PIN-mediated auxin transport and its role in various developmental processes and under different biotic and abiotic stress conditions. In this study, we performed genome-wide analysis of the PIN gene family in common wheat and identified 44 TaPIN genes through a homology search, further characterizing them to understand their structure, function, and distribution across various tissues. Phylogenetic analyses led to the classification of TaPIN genes into seven different groups, providing evidence of an evolutionary relationship with Arabidopsis thaliana and Oryza sativa. A gene exon/intron structure analysis showed a distinct evolutionary path and predicted the possible gene duplication events. Further, the physical and biochemical properties, conserved motifs, chromosomal, subcellular localization, transmembrane domains, and three-dimensional (3D) structure were also examined using various computational approaches. Cis-elements analysis of TaPIN genes showed that TaPIN promoters consist of phytohormone, plant growth and development, and stress-related cis-elements. In addition, expression profile analysis also revealed that the expression patterns of the TaPIN genes were different in different tissues and developmental stages. Several members of the TaPIN family were induced during biotic and abiotic stress. Moreover, the expression patterns of TaPIN genes were verified by qRT-PCR. The qRT-PCR results also show a similar expression with slight variation. Therefore, the outcome of this study provides basic genomic information on the expression of the TaPIN gene family and will pave the way for dissecting the precise role of TaPINs in plant developmental processes and different stress conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号