首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to meet the energy requirements, there has been growing interest in alternative fuels like biodiesels, methyl alcohol, ethyl alcohol, biogas, hydrogen and producer gas to provide a suitable diesel oil substitute for internal combustion engines. Biomass is basically composed of carbon, hydrogen and oxygen. A proximate analysis of biomass indicates the volatile matter to be between 60–80% and 20–25% carbon and the rest, ash. The first part of sub-stoichiometric oxidation leads to the loss of volatiles from biomass and is exothermic; it results in peak temperatures of 1400–1500 K and generation of gaseous products like carbon monoxide, hydrogen in some proportions and carbon dioxide and water vapor, which in turn are reduced in part to carbon monoxide and hydrogen by the hot bed of charcoal generated during the process of gasification. Therefore, solid biomass can be converted into a mixture of combustible gases, and subsequently utilized for combustion in a CI engine. Producer gas, if used in dual fuel mode, is an excellent substitute for reducing the amount of diesel consumed by the CI engine. Downdraft moving bed gasifiers coupled with an IC engine are a good choice for moderate quantities of available biomass, up to 500 kW of electric power. Vegetable oils present a very promising alternative to diesel oil since they are renewable and have similar properties. Vegetable oils offer almost the same power output with slightly lower thermal efficiency when used in diesel engines [1], [2], [3], [4], [5], [6], [7]. Research in this direction with edible oils have yielded encouraging results, but their use as fuel for diesel engines has limited applications due to higher domestic requirement [8], [9], [10]. In view of this, Honge oil (Pongamia Pinnata Linn) is selected and its viscosity is reduced by the transesterification process to obtain Honge oil methyl ester (HOME). Since vegetable oils produce higher smoke emissions, dual fuel operation could be adopted in order to improve their performance. A gas carburetor was suitably designed to maximize the engine performance in dual fuel mode with Honge oil–producer gas and HOME–producer gas respectively. Thus bio-derived gas and vegetable oil, when used in a dual fuel mode with carburetor, resulted in better performance with reduced emissions.  相似文献   

2.
《Applied Thermal Engineering》2007,27(2-3):576-585
A household size trigeneration based on a small-scale diesel engine generator set is designed and realized in laboratory. Experimental tests are carried out to evaluate the performance and emissions of the original single generation (diesel engine generator); and the performances of the whole trigeneration including the diesel generator within the trigeneration system, the heat exchangers which are used to recover heat from engine exhaust, the absorption refrigerator which is driven by the exhaust heat; and the emissions from the whole trigeneration.Comparisons of the test results of two generations are also performed. The test results show that the total thermal efficiency of trigeneration reaches to 67.3% at the engine full load, comparing to that of the original single generation 22.1% only. Within the range of engine loads tested, the total thermal efficiencies of trigeneration are from 205% to 438% higher than that of the thermal efficiency of single generation.The CO2 emission per unit (kW h) of useful energy output from trigeneration is 0.401 kg CO2/kW h at the engine full load, compared to that of 1.22 kg CO2/kW h from single generation at the same engine load. Within the range of engine loads tested, the reductions of CO2 emission per unit (kW h) of trigeneration output are from 67.2% to 81.4% compared to those of single generation.The experimental results show that the idea of realizing a household size trigeneration is feasible; the design and the set-up of the trigeneration is successful. The experimental results show that the innovative small-scale trigeneration is able to generate electricity, produce heat and drive a refrigeration system, simultaneously from a single fuel (diesel) input.  相似文献   

3.
Energy is an essential requirement for economic and social development of any country. Sky rocketing of petroleum fuel costs in present day has led to growing interest in alternative fuels like vegetable oils, alcoholic fuels, CNG, LPG, Producer gas, biogas in order to provide a suitable substitute to diesel for a compression ignition (CI) engine. The vegetable oils present a very promising alternative fuel to diesel oil since they are renewable, biodegradable and clean burning fuel having similar properties as that of diesel. They offer almost same power output with slightly lower thermal efficiency due to their lower energy content compared to diesel. Utilization of producer gas in CI engine on dual fuel mode provides an effective approach towards conservation of diesel fuel. Gasification involves conversion of solid biomass into combustible gases which completes combustion in a CI engines. Hence the producer gas can act as promising alternative fuel and it has high octane number (100–105) and calorific value (5–6 MJ/Nm3). Because of its simpler structure with low carbon content results in substantial reduction of exhaust emission. Downdraft moving bed gasifier coupled with compression ignition engine are a good choice for moderate quantities of available mass up to 500 kW of electrical power. Hence bio-derived gas and vegetable liquids appear more attractive in view of their friendly environmental nature. Experiments have been conducted on a single cylinder, four-stroke, direct injection, water-cooled CI engine operated in single fuel mode using Honge, Neem and Rice Bran oils. In dual fuel mode combinations of Producer gas and three oils were used at different injection timings and injection pressures.Dual fuel mode of operation resulted in poor performance at all the loads when compared with single fuel mode at all injection timings tested. However, the brake thermal efficiency is improved marginally when the injection timing was advanced. Decreased smoke, NOx emissions and increased CO emissions were observed for dual fuel mode for all the fuel combinations compared to single fuel operation.  相似文献   

4.
This paper has proposed an integrated advanced thermal power system to improve the performance of the conventional combined cycle power plant. Both inlet air cooling and inter-cooling are utilized within the proposed system to limit the decrease of the air mass flow contained in the given volume flow as well as reduce the compression power required. The latent heat of spent steam from a steam turbine and the heat extracted from the air during the compression process are used to heat liquefied natural gas (LNG) and generate electrical energy. The conventional combined cycle and the proposed power system are simulated using the commercial process simulation package IPSEpro. A parametric analysis has been performed for the proposed power system to evaluate the effects of several key factors on the performance. The results show that the net electrical efficiency and the overall work output of the proposed combined cycle can be increased by 2.8% and 76.8 MW above those of the conventional combined cycle while delivering 75.8 kg s?1 of natural gas and saving 0.9 MW of electrical power by removing the need for sea water pumps used hitherto. Compared with the conventional combined cycle, the proposed power system performance has little sensitivity to ambient temperature changes and shows good off-design performance.  相似文献   

5.
《Applied Thermal Engineering》2007,27(5-6):840-847
This work evaluates the environmental impact resulting from the natural gas and diesel combustion in thermoelectric power plants that utilize the combined cycle technology (CC), as regarding to Brazilian conditions according to Thermopower Priority Plan (TPP). In the regions where there are not natural gas the option has been the utilization of diesel and consequentily there are more emission of pollutants. The ecological efficiency concept, which evaluates by and large the environmental impact, caused by CO2, SO2, NOx and particulate matter (PM) emissions. The combustion gases of the thermoelectric power plants working with natural gas (less pollutant) and diesel (more pollutant) cause problems to the environment, for their components harm the human being life, animals and directly the plants. The resulting pollution from natural gas and diesel combustion is analyzed, considering separately the CO2, SO2, NOx and particulate matter gas emission and comparing them with the in use international standards regarding the air quality. It can be concluded that it is possible to calculate thermoelectric power plant quantitative and qualitative environment factor, and on the ecological standpoint, for plant with total power of 41 441 kW, being 27 170 kW for the gas turbine and 14271 kW for the steam turbine. The natural gas used as fuel is better than the diesel, presenting ecological efficiency of 0.944 versus 0.914 for the latter, considering a thermal efficiency of 54% for the combined cycle.  相似文献   

6.
This paper investigates the effects of turbocharger on the performance of a diesel engine using diesel fuel and biodiesel in terms of brake power, torque, brake specific consumption and thermal efficiency, as well as CO and NOx emissions. For this aim, a naturally aspirated four-stroke direct injection diesel engine was tested with diesel fuel and neat biodiesel, which is rapeseed oil methyl ester, at full load conditions at the speeds between 1200 and 2400 rpm with intervals of 200 rpm. Then, a turbocharger system was installed on the engine and the tests were repeated for both fuel cases. The evaluation of experimental data showed that the brake thermal efficiency of biodiesel was slightly higher than that of diesel fuel in both naturally aspirated and turbocharged conditions, while biodiesel yielded slightly lower brake power and torque along with higher fuel consumption values. It was also observed that emissions of CO in the operations with biodiesel were lower than those in the operations with diesel fuel, whereas NOx emission in biodiesel operation was higher. This study reveals that the use of biodiesel improves the performance parameters and decreases CO emissions of the turbocharged engine compared to diesel fuel.  相似文献   

7.
The poplar bioenergy system has been analysed applying life cycle assessment (LCA) to compare its environmental performance to: Ethiopian mustard bioenergy system and natural gas. The life cycle impact assessment (LCIA) shows that the use of fertilizers is the highest impact in four of the 10 environmental categories, representing between 39% and 67% of the impact in them. The diesel used in transport vehicles and agricultural tractors also has a significant impact in another five of the 10 analysed categories 40–85%. The poplar bioenergy system contributes to global warming with 1.90–1.98 g CO2 eq MJ?1 biomass produced. The production and transport as far as the thermoelectric plant of the poplar biomass consumes 0.02 MJ of primary energy per 1 MJ of biomass stored. In comparison with Ethiopian mustard and natural gas, it reduces primary energy consumption by 83% and 89% and the greenhouse gas emission by 84% and 89%, respectively. The results of the analysis support that the poplar bioenergy system is viable from an energy balance and environmental perspective for producing energy in southern Europe, as long as it is cultivated in areas where water is available. This latter point and the better environmental performance of both crops in comparison to natural gas allows us to affirm that the combination of several crops adapted to the local agro-climatic conditions of the territory will be the most suitable strategy in Mediterranean areas that wish to reach the global energy production targets in terms of biomass established by the European Union (EU).  相似文献   

8.
The purpose of this work is to investigate gas to liquid heat transfer performance of concentric tube heat exchanger with twisted tape inserted corrugated tube and to evaluate its impact on engine performance and economics through heat recovery from the exhaust of a heavy duty diesel generator (120 ekW rated load). This type of heat exchanger is expected to be inexpensive to install and effective in heat transfer and to have minimal effect on exhaust emissions of diesel engines. This type of heat exchanger has been investigated for liquid to liquid heat transfer at low Reynolds number by few investigators, but not for gas to liquid heat transfer. In this paper, a detail of heat transfer performance is investigated through simulations using computer software. The software is first justified by comparing the simulation results with the developed renowned correlations. Simulations are then conducted for concentric tube heat exchanger with different twisted tape configuration for optimal design. The results show that the enhancement in the rate of heat transfer in annularly corrugated tube heat exchanger with twisted tape is about 235.3% and 67.26% when compared with the plain tube and annularly corrugated tube heat exchangers without twisted tapes respectively. Based on optimal results, for a 120 ekW diesel generator, the application of corrugated tube with twisted tape concentric tube heat exchanger can save 2250 gal of fuel, $11,330 of fuel cost annually and expected payback of 1 month. In addition, saving in heating fuel also reduces in CO2 emission by 23 metric tons a year.  相似文献   

9.
This paper presents the main characteristics of an innovative cooling system for the air conditioning of a truck cabin, as well as a first estimation of its performance during a standard driving cycle, obtained with a specifically developed vehicle-engine-cooling system overall model. The innovative cooling system consists of a water–zeolite adsorption–desorption system, which employs the waste heat from the engine to produce the cooling of the vehicle cabin. The developed global model is completely dynamic and is able to: reproduce the operation of the engine through a standard driving cycle, evaluate the waste heat available at the engine hydraulic loop; calculate the sequential operation of an adsorption–desorption system, calculate the condensed water per cycle, the cooling effect produced at the evaporator, and finally, the temperature and humidity evolution of the air inside the cabin. The model was validated by experimental data. The experimental tests were performed in a lab-scale adsorption chiller prototype specifically designed and realized to be driven by the low grade waste heat (80–90 °C) from the engine coolant loop of a truck. The experimental activity carried out showed that the chiller is able to generate up to 5 kW of peak cooling power at 10 °C (35 °C of condensation temperature) with a COP of 0.6. The obtained results show that the system could be able to provide a significant amount of the required cooling.  相似文献   

10.
《Biomass & bioenergy》2006,30(6):580-583
One unit of Sardar Patel Renewable Energy Research Institute (SPRERI's) 1.25 GJ h−1 capacity open core down draft gasifier burner system, suitable for thermal application was installed at M/s Dinesh Pharmaceutical Pvt. Ltd., Nandesari, for steam generation. Producer gas burner was used in dual fuel mode (60% LDO (light diesel oil)+40% producer gas). Gasifier consumed 78–80 kg h−1 of wood, and replaced 40% (20 l h−1) LDO. The system was tested for a cumulative period of 600 h using sawmill woody waste as feedstock in test runs of 15–18 h. Financial analysis of the gasifier system showed that user could save about Rs. 221.8 per hour by using dual fuel (60% LDO+40% producer gas) for steam generation. Economic analysis of the system tested in the field indicated the viability of the gasifier-based operation.  相似文献   

11.
《Energy》2005,30(11-12):2206-2218
Combustion characteristics of low-BTU gases (about 1000 kcal/N m3) were experimentally investigated in order to develop engine generators for waste gasification and power generation systems. Two simulated low-BTU gases, obtained from one-step high temperature gasification (hydrogen rich) and two-step pyrolysis/reforming gasification (methane rich), as well as natural gas, were tested in a small-scale spark ignition engine. Compared to the natural gas driven engine, the hydrogen rich low-BTU gas driven engine showed similar thermal efficiency but with significantly lower NOx and hydrocarbon emissions and wider equivalence ratio range for stable engine operation. On the other hand, the methane rich low-BTU gas engine showed narrower equivalence ratio range for stable operation. The test results show engine performance more depends on combustion characteristics than on the heating value of the fuel gas. For better engine performance, hydrogen rich fuel gas is desirable.  相似文献   

12.
In this paper, response surface methodology (RSM) based on central composite design (CCD) is applied to obtain an optimization design of finned type heat exchangers (HEX) to recover waste heat from the exhaust of a diesel engine. The design is performed for a single point operation (1600 rpm and 60 N m) of an OM314 diesel engine obtained from experimental measurements. Based on the CCD principle, fifteen HEX cases with different fins height, thickness and number are modeled numerically and the optimization is done to have the maximum heat recovery amount and minimum of pressure drop along the heat exchanger.  相似文献   

13.
The aim of this study is to investigate the suitability of isobutanol–diesel fuel blends as an alternative fuel for the diesel engine, and experimentally determine their effects on the engine performance and exhaust emissions, namely break power, break specific fuel consumption (BSFC), break thermal efficiency (BTE) and emissions of CO, HC and NOx. For this purpose, four different isobutanol–diesel fuel blends containing 5, 10, 15 and 20% isobutanol were prepared in volume basis and tested in a naturally aspirated four stroke direct injection diesel engine at full -load conditions at the speeds between 1200 and 2800 rpm with intervals of 200 rpm. The results obtained with the blends were compared to those with the diesel fuel as baseline. The test results indicate that the break power slightly decreases with the blends containing up to 10% isobutanol, whereas it significantly decreases with the blends containing 15 and 20% isobutanol. There is an increase in the BSFC in proportional to the isobutanol content in the blends. Although diesel fuel yields the highest BTE, the blend containing 10% isobutanol results in a slight improvement in BTE at high engine speeds. The results also reveal that, compared to diesel fuel, CO and NOx emissions decrease with the use of the blends, while HC emissions increase considerably.  相似文献   

14.
Diesterol is a new specific term which denotes a mixture of fossil diesel fuel (D), vegetable oil methyl ester called biodiesel (B) and plant derived ethanol (E). In the context of the present paper, this term refers specifically to the combination of diesel fuel, bioethanol produced from potato waste, dehydrated in a vapor phase using 3A Zeolite, and sunflower methyl ester produced through transesterification. The mixture of DBE, i.e. diesterol, was patented under the Iranian patent No. 39407, dated 12-3-2007. The main purpose of this research work was to reduce engine exhaust NOx, CO, HC and smoke emissions due to application of biofuel and the increase of fuel oxygen content. It was needed to prepare suitable low cost and renewable additives. The diesterol properties such as pour point, viscosity, flash point, copper strip corrosion, ash content, sulfur content and cetane number were determined experimentally. The optimum ratio of bioethanol and biodiesel was found to be 40/60 considering fuel oxygen content, fuel price and mixture properties. Bioethanol was added to enhance the oxygenated component in the fuel, while the sunflower methyl ester was added to maintain the fuel stability at low temperatures. The parameters considered for investigation are the engine power, torque, specific fuel consumption and exhaust emissions for various mixture proportions. The experimental results showed that bioethanol plays an important role in determining the flash point of the blends. By adding 3% bioethanol to diesel and sunflower methyl ester, the flash point was reduced by 16 °C. The viscosity of the blend was also reduced by increasing the amount of bioethanol. The sulfur content of bioethanol and sunflower methyl ester is very low compared to diesel fuel. The sulfur content of diesel is 500 ppm whereas that of bioethanol and sunflower methyl ester is 0 and 15 ppm, respectively. This lower sulfur content is another factor enhancing the use of fuel blends in diesel engines. The bioethanol and sunflower methyl ester combination has sulfur content less than 20 ppm. The maximum power and torque using diesel fuel were 17.75 kW and 64.2 Nm at 3600 and 2400 rpm, respectively. Adding oxygenated compounds to the new blend seems to slightly reduce the engine power and torque and increased the average sfc for various speeds. The experimental measurement and observation of smoke concentration, NOx, CO and HC concentration indicated that both of these pollutants reduced by increasing the biofuel composition of diesterol throughout the engine operating range.  相似文献   

15.
In this study, the effects of premixed ratio of diethyl ether (DEE) on the combustion and exhaust emissions of a single-cylinder, HCCI-DI engine were investigated. The experiments were performed at the engine speed of 2200 rpm and 19 N m operating conditions. The amount of the premixed DEE was controlled by a programmable electronic control unit (ECU) and the DEE injection was conducted into the intake air charge using low pressure injector. The premixed fuel ratio (PFR) of DEE was changed from 0% to 40% and results were compared to neat diesel operation. The percentages of premixed fuel were calculated from the energy ratio of premixed DEE fuel to total energy rate of the fuels. The experimental results show that single stage ignition was found with the addition of premixed DEE fuel. Increasing and phasing in-cylinder pressure and heat release were observed in the premixed stage of the combustion. Lower diffusion combustion was also occurred. Cycle-to cycle variations were very small with diesel fuel and 10% DEE premixed fuel ratio. Audible knocking occurred with 40% DEE premixed fuel ratio. NOx-soot trade-off characteristics were changed and improvements were found simultaneously. NOx and soot emissions decreased up to 19.4% and 76.1%, respectively, while exhaust gas temperature decreased by 23.8%. On the other hand, CO and HC emissions increased.  相似文献   

16.
Throughout this work the thermal behavior of an adsorptive natural gas (ANG) storage under dynamic discharge conditions at room temperature of 27 °C was studied. The work was conducted in a gravimetrically built experimental unit where the storage chamber was equipped with axial and radial distributed thermocouples and the storage was discharged at different discharge rates. The results demonstrated that maximum methane discharge rate of 5 L min−1 in activated carbon/methane system resulted in the severest temperature drop corresponding to further drop of about 40% compared to that at 1 L min−1. This extreme thermal condition claimed a reduction of 15.2% in methane dynamic delivery capacity with respect to the isothermal delivery capacity. Ethane and propane have high enthalpies of desorption, and hence high portions of these gases may influence the performance of ANG storages through their thermal impact. A gas mixture with 14.98% and 14.54% volumes of ethane and propane resulted in higher temperature drop than methane claiming a reduction of 19.4% in the dynamic delivery capacity comparing with methane delivery capacity.  相似文献   

17.
《Renewable Energy》2007,32(4):547-566
In this paper, two single-acting, twin power piston and four power pistons, gamma-configuration, low-temperature differential Stirling engine are designed and constructed. The engine performance is tested with air at atmospheric pressure by using a gas burner as a heat source. The engine is tested with various heat inputs. Variations of engine torque, shaft power and brake thermal efficiency at various heat inputs with engine speed and engine performance are presented. The Beale number obtained from testing of the engines is also investigated. The results indicate that, for twin power piston engine, at a maximum actual heat input of 2355 J/s with a heater temperature of 589 K, the engine produces a maximum torque of 1.222 N m at 67.7 rpm, a maximum shaft power of 11.8 W at 133 rpm, and a maximum brake thermal efficiency of 0.494% at 133 rpm, approximately. For the four power pistons engine, the results indicate that at the maximum actual heat input of 4041 J/s with the heater temperature of 771 K, the engine produces a maximum torque of 10.55 N m at 28.5 rpm, a maximum shaft power of 32.7 W at 42.1 rpm, and a maximum brake thermal efficiency of 0.809% at 42.1 rpm, approximately.  相似文献   

18.
Recently, there has been wide-ranging research on the idea of biomass fuel powered externally firing micro gas turbines; but only a small subset of these studies has used experimental work to evaluate the systems. These systems have not yet been employed in Malaysia for applications in thermal energy or power generation. The objective of this study is to determine the performance of a stainless steel high-temperature heat exchanger, which was built to transfer thermal power from a biomass gasifier-combustor to the pure air turbine working fluid. The study is based on experimental work using different air blower capacities as an air supply. The heat exchanger achieved 694 °C turbine inlet temperature with an average effectiveness of 62.5%.  相似文献   

19.
This paper deals with the effects of the operating parameters on the cooling performance that can be applied for a transcritical CO2 automotive air conditioning system. The experimental conditions of the performance tests for a CO2 system and components such as a gas cooler and an evaporator were suggested to compare with the performance of each at the standardized test conditions. This research presents experimental results for the performance characteristics of a CO2 automotive air conditioning system with various operating conditions such as different gas cooler inlet pressures, compressor speeds and frontal air temperatures/flow rates passing through the evaporator and the gas cooler. Experimental results show that the cooling capacity was more than 4.9 kW and coefficient of performance (COP) was more than 2.4, at each optimum pressure of gas cooler inlet during idling condition. Also, the cooling capacity was about 7.5 kW and COP was about 1.7 at the optimum pressure of gas cooler inlet during driving condition when air inlet temperatures of gas cooler and evaporator were 45 °C and 35 °C, respectively. Therefore, we concluded that the automotive air conditioning system using CO2 refrigerant has good performance. This paper also deals with the development of optimum high pressure control algorithm for the transcritical CO2 cycle to achieve the maximum COP.  相似文献   

20.
In recent years, efforts have been directed towards environmentally freindly sources of alternative fuels for internal combustion engines. This paper investigates combustion characteristics and performance of natural gas in an unmodified compression ignition engine using diesel fuel pilot injection. The factors influencing knock limits in dual fuel gas engines have been identified. This report is confined to experimental work in a naturally aspirated dual gas engine and the results obtained were compared with the diesel fueled test engine. Cylinder pressure diagrams recorded indicate longer ignition delay and burning rates with an increased pressure variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号