共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
低温太阳能热力发电有机朗肯循环工质的选择 总被引:3,自引:1,他引:3
为了筛选出适宜于低温太阳能热力发电有机朗肯循环的工质,根据 PR 状态方程计算和分析了采用 11 种低沸点有机流体工质的低温太阳能发电朗肯循环的热力性能.结果表明:随着工质临界温度的升高,有机透平进口处的最大蒸发压力基本呈下降趋势;在凝结温度与有机透平进口温度一定的情况下,临界温度越高的流体,其循环热效率越高;使用正已烷和正戊烷能获得较高的循环热效率,凝汽器中的凝结压力比较适中,是比较适合用作低温太阳能热力发电有机朗肯循环的工质. 相似文献
3.
4.
5.
6.
对于可再生能源和工业余热资源,有机朗肯循环技术(organic Rankine cycle,ORC)被认为是一种高效的能源回收利用技术。其中R245fa因为其自身良好的环保性以及热力性能,被认为是一种具有良好应用前景的ORC工质。对于ORC系统来说,工质的材料相容性是保证系统稳定运行的基础。针对ORC系统实际工况,确定部件、温度、材料等因素的对应关系,提出一套适用于ORC工质材料相容性研究的实验方法,并以R245fa为例开展了实验研究。实验结果表明,在高温条件下,304不锈钢与R245fa的相容性要优于铜材料;同时在橡胶密封材料的选择上,不建议使用氟橡胶,且三元乙丙橡胶的相容性要优于聚四氟乙烯。 相似文献
7.
以6F. 01联合循环机组为研究对象,比较分析其与9F. 05联合循环机组的热力性能,由此对朗肯循环热力性能进行简要分析。分析认为现阶段提高6F. 01机组主蒸汽压力和温度是提升朗肯循环效率的有效手段。若将汽轮机入口主蒸汽参数由8. 086 MPa. a、565℃提高至16. 2 MPa. a、585℃,朗肯循环效率可由32. 358%提升至33. 745%。研究成果可为类似容量机组主蒸汽参数优化提供参考。 相似文献
8.
太阳能驱动有机朗肯循环的工质比较 总被引:1,自引:0,他引:1
针对太阳能热水和其它低品位热能的动力利用,研究了工作在100℃供热温度和30℃冷凝温度之间的有机朗肯循环工质的优化选择,以满足较高的循环效率、较大的机械能输出、较小的排气量需求等要求。工质模型采用RKS状态方程,针对R22在-30~95℃温度区间内,计算结果与ASHRAE20-2005数据比较,除液相密度外,其它的热力学参数计算绝对误差小于5%,满足工程模拟要求。利用RKS模型,文中分析了19种有机工质的动力循环参数,发现工质R11的热力学性能系数最高。结合GWP和ODP环境指标,发现R142b、Rc318与R600适合于低温朗肯循环。 相似文献
9.
燃气轮机以其高效率、低污染、运行成本低的优点被广泛应用于分布式发电系统中。为了进一步提升天然气资源的利用率,本文提出了带回热的燃气轮机-有机朗肯(ORC)联合循环,以高临界温度的有机物为底循环工质,来回收燃气轮机排气中的余热。建立了带回热的燃气轮机-ORC联合循环的模型,提出了使该联合循环热效率最优的热力设计方法,进行了不同设计条件下的仿真试验。结果表明,与传统的燃气-蒸汽动力循环相比,带回热的燃气轮机-ORC联合循环具有更高的联合循环热效率。选择甲苯作为底循环工质,可以获得最高的联合循环效率。此外,燃气轮机-ORC联合循环可以用于热电联供,同时满足区域电负荷和热负荷的要求。 相似文献
10.
为提高基本ORC(有机朗肯循环)系统换热器内冷热流体换热温差匹配程度,提升系统热力性能,提出一种ORC-R(热源自调节有机朗肯循环发电)系统,基于热力学第一定律和第二定律,建立了系统的数学模型并编制计算机程序进行分析,研究表明:当热源与有机工质换热温差不匹配时,采用热源自调节方式可有效提升基本ORC系统热力性能;热源自调节系数不同,ORC-R系统热力性能提升程度不同,存在随热源温度不同而有所变化的极限调节值;同时,ORC-R系统较基本ORC系统达到性能最优值时的蒸发温度降低,ORC-R系统净输出功、火用效率随热源自调节系数增加呈现先增加后减小的变化规律,可找到热源自调节系数的最佳值使ORC-R系统热力性能达到最优;热源温度Tg=373、383、393和403 K时,ORC-R系统净输出功Wnet较基本ORC系统分别增加35.52%、42.75%、51.15%和57.63%;ORC-R系统火用效率ηex分别为基本ORC系统的0.879 9倍、1.174 9倍、1.485 8倍和1.807 8倍。 相似文献
11.
Open Cycle-Ocean Thermal Energy Conversion (OC-OTEC) system has a merit to use a heat exchanger of direct contact type without a heat transfer tube. Therefore, it is expected that the capital cost of OC-OTEC is reduced by use of this simply designed heat exchanger. However, non-condensable gas is released in the system, because in a direct contact evaporator, the steam driving a turbine is generated by surface sea water including air, and existing air causes a reduction of system performance. From the above point of view, we carried out an experimental study on the operating characteristics and the effect of structure of a heat exchanger and the existence of non-condensable gas on the performance of a direct contact heat exchanger in an experimental apparatus of barometric type OC-OTEC. As a result, the performance of the direct contact evaporator can be satisfied. However, we cannot get satisfactory results in a direct contact condenser. Therefore, we conducted further experiments through the improvement of the structure of the condenser and the control of the non-condensable gas. Finally, we concluded that the major factor affecting the system performance is the non-condensable gas, but its effect can be ignored when its concentration is below 8%. © 1997 Scripta Technica, Inc. Heat Trans Jpn Res 25(4): 226–237, 1996 相似文献
12.
13.
14.
Xuelin ZHANG Tong ZHANG Xiaodai XUE Yang SI Xuemin ZHANG Shengwei MEI 《Frontiers in Energy》2020,14(4):889-900
Hot dry rock is a new type of geothermal resource which has a promising application prospect in China. This paper conducted a comparative research on performance evaluation of two eligible bottoming cycles for a hot dry rock power plant in the Gonghe Basin. Based on the given heat production conditions, a Kalina cycle and three organic Rankine cycles were tested respectively with different ammonia-water mixtures of seven ammonia mass fractions and nine eco-friendly working fluids. The results show that the optimal ammonia mass fraction is 82% for the proposed bottoming Kalina cycle in view of maximum net power output. Thermodynamic analysis suggests that wet fluids should be supercritical while dry fluids should be saturated at the inlet of turbine, respectively. The maximum net power output of the organic Rankine cycle with dry fluids expanding from saturated state is higher than that of the other organic Rankine cycle combinations, and is far higher than the maximum net power output in all tested Kalina cycle cases. Under the given heat production conditions of hot dry rock resource in the Gonghe Basin, the saturated organic Rankine cycle with the dry fluid butane as working fluid generates the largest amount of net power. 相似文献
15.
16.
17.
R600a/R601a mixtures are promising to be widely used in organic Rankine cycle (ORC) systems and also can promote the popularization of ORC technology. While, most of existing studies on ORC systems using R600a/R601a mixtures are based on certain heat source temperatures (generally below 150°C) and saturated vapor at the evaporator outlet. Variations in the optimal mixture composition and superheat degree of R600a/R601a mixtures with increasing heat source temperature remain indeterminate thus far, especially for heat sources above 150°C. Suitable approaches to further improve the system thermodynamic performance are also unclear. This study carried out a systematized analysis for subcritical ORC systems using R600a/R601a mixtures driven by heat sources of 100°C to 200°C, based on the first and second law analysis methods. Guidelines for selections of optimal mixture composition and cycle parameters were provided. Characteristics of exergy loss distribution were revealed to point out the crucial process to further improve the system thermodynamic performance. Results show that the effects of critical parameters on the selections of optimal mixture composition and evaporation pressure become remarkable for heat sources above approximately 160°C. A minimum superheat degree is optimal for heat sources below 170°C, whereas the optimal superheat degree may increase with increasing heat source temperature and R600a mass fraction for heat sources above 170°C. Moreover, reducing the exergy losses in the heat absorption process, turbine, and condenser is vital to further increase the heat‐work conversion efficiency for heat sources of approximately 100°C to 160°C, 170°C to 190°C, and 200°C, respectively. 相似文献
18.
对采用不同换热器配置的有机朗肯循环(ORC)系统进行了分析,理论分析结果表明:在柴油机烟气余热ORC系统所有部件之中,蒸发器的损失最大;通过增加预热器或回热器能进一步提高热源的利用率,但同时系统的损失和成本增加。为此对影响ORC系统性能的关键因素进行优化设计:使蒸发器过热度和冷凝器的过冷度取1~2℃;并尽可能提高膨胀机的膨胀比和内效率。试验结果表明:ORC试验系统理论热效率5.7%,实际热效率5.3%,引起偏差的主要原因是膨胀机实际容积效率低于理论值,实际机械消耗大于理论值,且系统混入的不凝气也对系统造成影响。新开发的低温烟气余热ORC系统的设计方法,实现了对烟气余热ORC系统的优化配置,为船舶柴油机烟气余热利用提供了一种切实可行的解决方案。 相似文献
19.
根据地热利用系统回灌的要求,对热源在系统出口处的温度进行限制,研究了双压有机朗肯循环(DPORC)中的热量分配以及随运行时间的系统性能变化,针对5种不同的有机工质进行了计算分析。研究表明:系统热力学性能的最大值和有机工质流量的最小值在同样的k值(热源提供给高压循环的热量与热源为DPORC提供的热量比)处获得。而采用R600和R245fa系统的净输出功率较大;相比R601,采用R245fa可以将系统的净输出功率提高168.06 kW(5.55%),热效率和效率分别可提高0.70%和2.86%。相比于单压有机朗肯循环(SPORC),DPORC可以有效减小系统随运行时间净输出功率降低的幅度。经过40 a的运行,采用R601的系统净输出功率降低幅度最低(428.11 kW, 14.14%),而采用R600系统的净输出功率降低幅度最大(526.75 kW, 16.55%)。 相似文献
20.
A supercritical Rankine cycle using zeotropic mixture working fluids for the conversion of low-grade heat into power 总被引:1,自引:0,他引:1
A supercritical Rankine cycle using zeotropic mixture working fluids for the conversion of low-grade heat into power is proposed and analyzed in this paper. Unlike a conventional organic Rankine cycle, a supercritical Rankine cycle does not go through the two-phase region during the heating process. By adopting zeotropic mixtures as the working fluids, the condensation process also happens non-isothermally. Both of these features create a potential for reducing the irreversibilities and improving the system efficiency. A comparative study between an organic Rankine cycle and the proposed supercritical Rankine cycle shows that the proposed cycle can achieve thermal efficiencies of 10.8-13.4% with the cycle high temperature of 393 K-473 K as compared to 9.7-10.1% for the organic Rankine cycle, which is an improvement of 10-30% over the organic Rankine cycle. When including the heating and condensation processes in the system, the system exergy efficiency is 38.6% for the proposed supercritical Rankine cycle as compared to 24.1% for the organic Rankine cycle. 相似文献