首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A residential-scale building integrated photovoltaic (BiPV) cogeneration system has been thermographically investigated. The results are useful in calibrating the numerical models created to predict the system's operational temperatures. The combined heat and power system is based on existing BiPV roofing technology with the addition of a modular heat recovery unit. The convection of the air behind the panels will serve both to cool the photovoltaic panels and provide a heat source for the residence. The analysis allows for the interpretation of the surface emissivities and operating temperatures, as well as qualitative graphic analysis of temperature gradients.  相似文献   

2.
《Energy》1999,24(2):93-102
Grid-connected photovoltaic systems are required to introduce photovoltaic solar energy into urban areas. To analyze these systems, a 2.0 kWp power system has been installed at the University of Málaga, Spain. The array power output was estimated by using measured I–V curves for the installed modules with minimization of mismatch losses. The supplied grid energy and main performances are described. The effects on system yield of threshold-inverter and coupling losses of the inverter to the grid have been studied. During 1997, the system supplied 2678 kWh to the grid, i.e. the mean daily output, was 7.4 kWh. The annual performance ratio was 64.5% and the optimal value 67.9%.  相似文献   

3.
The application of a stand-alone directly coupled photovoltaic (PV) electromechanical system for water pumping has increased in remote areas of developing countries. In this work, the performance of a PV-powered dc permanent-magnet (PM) motor coupled with a centrifugal pump has been analyzed at different solar intensities and corresponding cell temperature. The results obtained by experiments are compared with the calculated values, and it is observed that this system has a good match between the PV array and the electromechanical system characteristics. Through manual tracking (i.e., changing the orientation of PV array, three times a day to face the sun) the output obtained is 20% more compared to the fixed tilted PV array. It has been observed that the torque-speed curve at low solar intensities for a PV electromechanical system should be steeper than at higher solar intensities, and the load torque-speed curve should be as steep as possible in the operating region with low starting torque. The performance analysis will be helpful to select the suitable PV electromechanical system for water-pumping applications.  相似文献   

4.
简要概述了50kW大型并网光伏电站的系统构成;通过一段时间的运行,对该电站的一些关键部件进行性能评价。分析结果表明:电站的光伏组件设计合理,并网逆变器具有较高的转换效率。  相似文献   

5.
6.
Sustainable energy is one of the main options for resolving energy problems and climate change issues. Solar energy is one of the main promising renewable energy sources, which can be captured and converted to electrical energy through photovoltaic (PV) panels. In the open literature, it is shown that having two PV panels integrated into a back‐to‐back configuration placed on naturally reflective surfaces provides the potential of doubling the total power produced by a single‐faced PV panel with the appropriate location and orientation. This paper presents a case study of two‐PV panel systems for offshore power production. The relevance to offshore has the water surface as the reflective surface to produce power from the back facing panel. The city of Ottawa in Canada is selected as the location for a case study. Various conditions and operating parameters are considered in assessing the performance of the proposed system, including solar radiation intensity, system orientation, time of year in terms of months, and the variations in parameters throughout the day. The assessment of the proposed system is carried out through modeling and simulating the proposed double PV panels in the COMSOL Multiphysics software. It is found that the minimum improvement in the total power production over the single face conventional PV is 38% in January for the east‐facing PV front face. For the two PV systems, the optimal overall power production for the various time conditions and orientations, at the specified location, is found to be the north orientation of the PV panel. In this case, the power it produces is 89% of that of the east orientation. A similar trend is observed for the single‐faced PV panel, where the north‐facing PV provides 62% of what it could produce in the east‐facing orientation.  相似文献   

7.
Long-term validated simulation of a building integrated photovoltaic system   总被引:1,自引:2,他引:1  
Electrical and thermal simulations of a building integrated photovoltaic system were undertaken with a transient system simulation program using real field input weather data. Predicted results were compared with actual measured data. A site dependent global-diffuse correlation is proposed. The best-tilted surface radiation model for estimating insolation on the inclined surface was selected by statistical tests. To predict the module temperature, a linear correlation equation is developed which relates the temperature difference between module and ambient to insolation. Different combinations of tilted surface radiation model, global-diffuse correlation model and predicted module temperature were used to carry out the simulation and corresponding simulated results compared with the measured data to determine the best combination which gave the least error. Results show that modification of global-diffuse correlation and module temperature prediction improved the overall accuracy of the simulation model. The monthly error between measured and predicted PV output was lied below 16%. Over the period of simulation, the monthly average error between measured and predicted PV output was estimated to be 6.79% whereas, the monthly average error between measured and predicted inverter output was 4.74%.  相似文献   

8.
With the decline in price of the photovoltaics (PVs) their use as a power source for water pumping is the most attractive solution instead of using diesel generators or electric motors driven by a grid system. In this paper, a method to design a PV pumping system is presented and discussed, which is then used to calculate the required size of the PV for an existing farm. Furthermore, the amount of carbon dioxide emissions saved by the use of PV water pumping system instead of using diesel-fuelled generators or electrical motor connected to the grid network is calculated. In addition, an experimental set-up is developed for the PV water pumping system using both DC and AC motors with batteries. The experimental tests are used to validate the developed MATLAB model. This research work demonstrates that using the PV water pumping system is not only improving the living conditions in rural areas but it is also protecting the environment and can be a cost-effective application in remote locations.  相似文献   

9.
For estimating the performance of a photovoltaic (PV) water pumping system without battery storage, a simple algorithm has been developed. This simulation program uses the hourly global solar radiation, the hourly ambient temperature and the hourly wind speed as the input, moreover the characteristics of region (latitude, longitude, ground albedo) and characteristics of PV water pumping system (orientation, inclination, nominal PV module efficiency, NOCT, PV array area, PV temperature coefficient, miscellaneous power conditioning losses, miscellaneous PV array losses, temperature of reference, moto-pump efficiency and inverter efficiency). This work allows evaluating the economic interest of a remote PV water pumping systems in the desert of Southern Tunisia, which will have to satisfy an average daily volume of 45 m3 throughout the year compared to another very widespread energy system in the area, the diesel genset (DG), by using the method of the life-cycle cost (LCC). The cost per m3 of water was calculated for this system. It is found that the LCC for PV system is 0.500 TND/m3 and the LCC DG is 0.837 TND/m3. The present study indicates economic viability of PV water pumping systems in the desert of Tunisia.  相似文献   

10.
A novel heat pump system is proposed in that the PV/T collector is coupled with a solar assisted heat pump and works as an evaporator. The cooling effect of the refrigerant allows the PV modules to work at lower temperature and so its photovoltaic efficiency is improved. Mathematical model has been developed to analyze the complex energy conversion processes. Numerical simulation was then performed based on the distributed parameters approach. An experimental rig was also built to verify the real performance of the system as compared to the simulation model prediction. The results indicated that this photovoltaic solar assisted heat pump (PV-SAHP) has better coefficient of performance (COP) and photovoltaic efficiency than the separate units. Under the experimental conditions, the COP of the PV-SAHP reached 8.4 and the average value was around 6.5, whereas the average photovoltaic efficiency was around 13.4%. The experimental results were found in good agreement with the theoretical predictions on the system responses to changing environmental conditions.  相似文献   

11.
The present work deals with a simple transient analysis of a winter greenhouse integrated with a solar still. Explicit expressions for the temperatures of still cover, brine (basin-water), basin of the still/roof of the greenhouse, greenhouse air, plants and floor of the greenhouse have been developed so as to study the transient thermal performance of the system. The effect of several parameters, namely relative humidity, ventilation/infiltration, heat capacity of basin water and plants, etc. has been incorporated in the analysis. On the basis of numerical calculations, some interesting conclusions have been made.  相似文献   

12.
北京自动化技术研究院与合肥工业大学能源所、北京计科技术有限公司共同承担了科技部“十五”科技攻关项目“光伏屋顶并网发电系统”中关键技术“双向并网逆变器”的研究。项目于2002年6月启动,2003年2月开始工程施工,2003年4月15日整个系统试运行,2003年9月通过北京供电局并网质量检测,2004年元月2日通过科技部主持的项目验收。  相似文献   

13.
A Betka  A. Moussi 《Renewable Energy》2004,29(14):2167-2181
The performances of a photovoltaic pumping system based on an induction motor are degraded once insolation varies far from the value called nominal, where the system was sized. To surmount this handicap, an improvement of these performances by the optimization of the motor efficiency is described in this paper. The results obtained are compared with those of similar work pieces presented in the literature where the motor effeciency and air gap flux where optimized separatly. The simulation results show that the proposed system allows at the same time to combine the performances of the system with constant efficiency and the simplicity of implementation provided by the system with constant airgap flux.  相似文献   

14.
An experimental model of a photovoltaic (PV) module-proton exchange membrane (PEM) electrolyser system has been built. A model has been developed for each device separately based on the experimental results. Output current–voltage (IV) characteristics of the PV module are modelled in respect to different irradiance and temperature conditions by experimental tests. Similarly, input IV characteristic and hydrogen formation characteristic of the PEM electrolyser are measured and modelled. After these studies, combined PV module–PEM electrolyser system model is defined. There is a good agreement between model predictions and measurements. At 18–100% irradiance interval, operating points of PEM electrolyser on the PV module are predicted with relative errors of 0.1–0.8%. Furthermore, the study shows that these simple model system devices can easily be defined in MATLAB/Simulink and used to model similar systems of different size.  相似文献   

15.
The concentrated photovoltaic (CPV) system focuses solar radiation on the solar cells. CPV systems need to track the sun for keeping the reflected radiation focussed on the solar cell. A CPV module and its active water-cooling system are developed at the School of Energy and Environment, Southeast University, China and its performance has been reported here. This developed system has been used for testing the PV module's performance for different parameters such as operating temperature, power output, and efficiency. The experimental results show that the operating temperature of the CPV module under water cooling is reduced under 60 °C and therefore the efficiency of the CPV has increased and produced the more electric power output. The effect of water flow rate has been analyzed for the CPV efficiency and output.  相似文献   

16.
Performance analysis of a solar photovoltaic operated domestic refrigerator   总被引:2,自引:0,他引:2  
This paper describes the fabrication, experimentation and simulation stages of converting a 165 l domestic electric refrigerator to a solar powered one. A conventional domestic refrigerator was chosen for this purpose and was redesigned by adding battery bank, inverter and transformer, and powered by solar photovoltaic (SPV) panels. Various performance tests were carried out to study the performance of the system. The coefficient of performance (COP) was observed to decrease with time from morning to afternoon and a maximum COP of 2.102 was observed at 7 AM. Simulations regarding economic feasibility of the system for the climatic conditions of Jaipur city (India) were also carried out using RETScreen 4. It was observed that the system can only be economically viable with carbon trading option taken into account, and an initial subsidy or a reduction in the component costs – mainly SPV panels and battery bank.  相似文献   

17.
The idea of combining photovoltaic and solar thermal collectors (PVT collectors) to provide electrical and heat energy is an area that has, until recently, received only limited attention. Although PVTs are not as prevalent as solar thermal systems, the integration of photovoltaic and solar thermal collectors into the walls or roofing structure of a building could provide greater opportunity for the use of renewable solar energy technologies. In this study, the design of a novel building integrated photovoltaic/thermal (BIPVT) solar collector was theoretically analysed through the use of a modified Hottel-Whillier model and was validated with experimental data from testing on a prototype BIPVT collector.The results showed that key design parameters such as the fin efficiency, the thermal conductivity between the PV cells and their supporting structure, and the lamination method had a significant influence on both the electrical and thermal efficiency of the BIPVT. Furthermore, it was shown that the BIPVT could be made of lower cost materials, such as pre-coated colour steel, without significant decreases in efficiency.Finally, it was shown that by integrating the BIPVT into the building rather than onto the building could result in a lower cost system. This was illustrated by the finding that insulating the rear of the BIPVT may be unnecessary when it is integrated into a roof above an enclosed air filled attic, as this air space acts as a passive insulating barrier.  相似文献   

18.
In the present investigation a theoretical analysis has been presented for the modelling of thermal and electrical processes of a hybrid PV/T air heating collector coupled with a compound parabolic concentrator (CPC). In this design, several CPC troughs are combined in a single PV/T collector panel. The absorber of the hybrid PV/T collector under investigation consists of an array of solar cells for generation of electricity, while collector fluid circulating past the absorber provides useful thermal energy as in a conventional flat plate collector. In the analysis, it is assumed that solar cell efficiency can be represented by a linear decreasing function of its temperature. Energy balance equations have been developed for the various components of the system. Based on the developed analysis, both thermal and electrical performance of the system as a function of system design parameters are presented and discussed. Results have been presented to compare the performance of hybrid PV/T collector coupled with and without CPC. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

19.
The low irradiance efficiency of photovoltaic modules is important to the optimization of BIPV systems. When photovoltaic modules are integrated into a building, architectural design considerations compete with maximizing photovoltaic energy production. As a result, BIPV arrays are often not facing south and are frequently mounted vertically. Under these conditions, a greater portion of the total sunlight striking the array is diffuse or at high angles of incidence. In northern latitudes a significant amount of the total yearly energy is produced at low light levels.A grid-connected array of BIPV modules integrated into the BCIT Technology Centre building in Burnaby, B.C. was used for assessing the accuracy of an energy performance model developed for BIPV systems. The BIPV system uses AC modules and a computerized data acquisition system for monitoring the performance of modules and inverters. The performance model was developed from analysis of the open circuit voltage, maximum power point voltage and maximum power point current of the individual modules comprising the BIPV array.The algorithm for calculating power output of the photovoltaic array is derived from the ideal diode equation using the single diode model of a photovoltaic cell. An empirically derived parameter modifies the equation. Once the parameters for different module technologies are established, it is possible to compare their annual performance in a BIPV system.  相似文献   

20.
Standalone diesel generating system utilized in remote areas has long been practiced in Malaysia. Due to highly fluctuating diesel price, such a system is seemed to be uneconomical, especially in the long run if the supply of electricity for rural areas solely depends on such diesel generating system. This paper would analyze the potential use of hybrid photovoltaic (PV)/diesel energy system in remote locations. National Renewable Energy Laboratory’s (NREL) HOMER software was used to perform the techno-economic feasibility of hybrid PV/diesel energy system. The investigation demonstrated the impact of PV penetration and battery storage on energy production, cost of energy and number of operational hours of diesel generators for the given hybrid configurations. Emphasis has also been placed on percentage fuel savings and reduction in carbon emissions of different hybrid systems. At the end of this paper, suitability of utilizing hybrid PV/diesel energy system over standalone diesel system would be discussed mainly based on different solar irradiances and diesel prices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号