首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Order diversity combining technique is one of efficient methods to lower the complexity but not to significantly degrade performance. Recently, Eng and Milstein [1] proposed a novel order-combining technique, called the second order diversity combining (SC2) and third order diversity combining (SC3) and applied to Rayleigh fading channel. SC2 and SC3 schemes mean that the two (three) signals with the first two (three) largest amplitudes among the branches are chosen and coherently combined. However, when compared to Rayleigh distribution, the Nakagami-m distribution [10] provides a more general and versatile way to model wireless channel. For the reason, the bit error rate (BER) performance of proposed schemes were then analyzed with order statistic method and compared to the traditional diversity technique over Nakagami fading environment in this paper. The results are compared to maximal ratio combining (MRC), and conventional selection combining (SC) in coherent reception and to equal gain combining (EGC) in noncoherent reception. The results show that SC is in performance the worst for either in coherent or in noncoherent schemes, as expected. The performance differences between SC2 (SC3) and MRC (EGC) are not significant when the diversity order L 3, but the difference will increase when L 5. It is worth noting that the result of [1] is a special case with fading figure, m = 1. It is also observed the performance is much affected by the number of diversity branches L, the fading figure m, and the signal-to-noise ratio (SNR).  相似文献   

2.
赵太飞  王秀峰  王花  余叙叙  李永明 《红外与激光工程》2018,47(12):1222002-1222002(6)
根据弱湍流信道中对数正态分布模型,建立了紫外光非直视分集接收系统。采用开关键控(OOK)调制,在不同闪烁指数和接收天线数下,分别对比分析了最大比合并(MRC)、等增益合并(EGC)和选择性合并(SC)的误码性能。仿真结果表明,相比于无分集情况,采用三种合并方式的误码率性能有明显提升。在接收天线数相同的情况下,三种合并方式中,MRC的性能最优,其次是EGC,SC的性能最差。对比分析了不同接收天线数时的误码率性能,随着接收天线数的增加,三种合并方式的误码性能得到了较大改善。在弱湍流信道中,采用分集接收技术能够减轻衰落的影响,提高分集增益。  相似文献   

3.
常见分集合并系统的性能分析   总被引:1,自引:0,他引:1  
在移动通信中,分集技术是一种最有效的抗衰落技术。本文对3种常见的线性合并分集技术进行简要分析,给出它们的基带表示和合并器输出信噪比的概率密度函数(pdf),由此给出它们的合并增益。针对系统采用MPSK调制的情况,对瑞利衰落信道的3种合并分集系统的比特误码率(BER)性能进行理论研究,分别给出选择性合并(SC)和最大比率合并(MRC)系统的理论比特误码率表达式;对于等增益合并(EGC)分集,给出了一种近似的EGC系统的输出信噪比的pdf,由此导出EGC的一种近似的BER表达式,由蒙特卡罗仿真结果可以看出此近似的BER数值结果是准确的。数值结果显示:MRC性能最好,EGC性能稍差,而SC性能较差。文中给出的分析方法对于实际分集系统的理论研究具有普遍的指导意义。  相似文献   

4.
Performance analysis of predetection EGC receiver in Weibull fading channel   总被引:2,自引:0,他引:2  
The predetection equal gain combining (EGC) receiver is generally known to have a performance that is close to the maximal ratio combining (MRC) receiver while having relatively less implementation complexity. The bit error rate (BER) of an EGC receiver for binary, coherent and noncoherent modulations has been analysed for an independent Weibull fading channel. Numerical results have been compared with the available results for selection combining (SC) and MRC diversity receivers.  相似文献   

5.
无线相干光通信空间分集接收合并技术   总被引:4,自引:2,他引:2  
空间分集接收能补偿大气湍流造成的信道衰落。在给出相干检测分集接收的系统模型和晴朗大气信道模型的基础上,考虑子孔径间信号相关性,分析了等增益合并分集和最大比合并分集的误码率性能,并就中断概率与选择分集进行了比较。分析结果表明,空间分集接收能够明显改善相干光通信系统的性能,并且接收信号间的空间相关性越小分集接收的性能越好,其中最大比合并分集性能相对其他两种合并方式优势明显,选择分集性能最差,但它与等增益合并分集的差距不大,同时选择分集实现相对容易,在工程应用中要综合考虑实现的难易程度和性能。  相似文献   

6.
This paper presents a new Transmitted Reference (TR) Ultra-WideBand (UWB) receiver based on Spatial Diversity (SD), which employs Multi-Antenna Technology (MAT) to improve the performance of TR-UWB receiver. According to the amplitude of correlator output of every antenna branch, this paper analyzed the performances of the proposed TR-UWB receiver employing three different kinds of combina-tion strategies, i.e., Maximum Ratio Combination (MRC), Equal Gain Combination (EGC), and Selective Combination (SC), which are different from conventional ones, and theoretically proved that the performance of EGC is better than MRC. Simulation results verify that when EGC is adopted and BER=10–3, increasing three antennas provides Signal to Noise Ratio (SNR) gain of about 3 dB in CM4 channel and SNR gain of about 2 dB in CM2 channel.  相似文献   

7.
This paper examines the asymptotic (M/spl rarr//spl infin/) performance of M-ary frequency-shift keying (M-FSK) in multi-channels, or multiple frequency-nonselective, slowly fading channels, with coding, side information, and diversity reception. In particular, Reed-Solomon (RS) coding is considered in conjunction with the ratio-threshold test (RTT), which generates side information regarding the reliability of received symbols. The asymptotic performance of orthogonal signaling in multichannels with maximal ratio combining (MRC), postdetection equal gain combining (EGC), hybrid selection combining (H-SC), and selection combining (SC) is derived for an arbitrary statistical fading model and diversity order. The derivations reveal that coherent and noncoherent implementations of diversity combining schemes yield the same performance asymptotically. In addition, the asymptotic results are evaluated assuming a Nakagami-m fading model, and the effect of fading severity, diversity order, code rate, and side information upon the performance of the various diversity combiners is investigated. The minimum signal-to-noise ratio (SNR) required to achieve arbitrarily reliable or error-free communication, as well as the associated optimal RS code rate, are determined for various cases.  相似文献   

8.
The level crossing rates (LCRs) and average fade durations (AFDs) of a fading channel find diverse applications in the evaluation and design of wireless communication systems. Analytical expressions for these quantities are available in the literature for certain diversity reception techniques, but are generally limited to the Rayleigh fading channel, with few exceptions. Moreover, the methods employed are usually specific to a certain channel/diversity pair, and thus cannot be applied to all cases of interest. Using a unified methodology, we derive analytical expressions for the LCRs and AFDs for three diversity reception techniques and a general Nakagami (1960) fading channel. We provide novel analytical expressions for selection combining (SC) and equal-gain combining (EGC), and rederive in a more general manner the case of maximal-ratio combining (MRC). It is shown that our general results reduce to some specific cases previously published. These results are used to examine the effects of the diversity technique, the number of receiving branches and severity of the fading on the concerned quantities. It is observed that as the Nakagami m-parameter and the diversity order increase, the behavior of the combined received envelope for EGC follows closely the one for MRC, and distances itself from SC.  相似文献   

9.
为了有效抑制直升机降落过程中尾流造成的强湍流效应,采用分集接收技术来进行抑制。根据无线紫外光斜程通信和近直视通信的特性,给出接收信号强度的边缘分布概率密度函数,建立了基于gamma-gamma分布的紫外光近直视通信系统修正模型,将分集接收技术引入该模型。理论分析了湍流效应对接收光信号强度边缘概率密度分布的影响以及最大比合并(MRC)、等增益合并(EGC)和选择性合并(SC)的误码性能。结果表明,大气湍流强度越强,紫外光近直视通信系统的误比特率性能越差;二分集时,MRC,EGC,SC 3种合并方式信噪比性能分别提升了22dB,18dB,16dB。分集接收技术能有效抑制直升机助降过程中的强湍流效应,提升通信系统的稳定性和抗衰落性能。  相似文献   

10.
The improvements achievable using diversity with matched filter NCFSK (and DPSK) receivers operating on log-normal shadowed Nakagami-fading channels are analyzed. Three microdiversity techniques, equal gain combining (EGC), maximal ratio combining (MRC) and selection combining (SC) are compared. The system performances are assessed by considering two measures of coverage; one well suited for mobile users and one well suited for portable users. The detrimental effects of multipath fading in cellular mobile radio systems can be mitigated by using a number of microdiversity paths at the receiver. The effects of shadowing can be mitigated by using a number K of macrodiversity radio ports to serve each cell. The improvements gained by using microdiversity to combat multipath fading and macrodiversity to combat shadowing are investigated. The effects of the fading severity, the number of microdiversity branches at each port L and the number of macrodiversity ports K on the system performance are investigated in detail. The results, in most cases, are obtained by carrying out a single numerical integration (for any order of diversity). The results show that although MRC gives the best performance, EGC and SC perform nearly as well for dual (L=2) diversity. For larger L, i.e., L⩾4, the relative performance of SC deteriorates substantially whereas the performance of EGC remains close to that of MRC. Also, our results show that as the fading gets less severe, the performance of EGC gets closer to that of MRC, while the performance of SC worsens compared to that of MRC  相似文献   

11.
Coherent trellis-coded modulation (TCM) systems employing diversity combining are analyzed. Three different kinds of combining are considered: maximal ratio, equal gain, and selection combining (SC). First, the cutoff rate parameter is derived for equal gain combining (EGG) and SC assuming transmission over a fully interleaved channel with flat slow Rayleigh fading, which permits comparison with previously derived results for maximal ratio combining (MRC). Then, tight upper bounds on the pairwise error probabilities are derived for all three combining techniques. These upper bounds are expressed in product form to permit bounding of the bit error rate (BER) via the transfer function approach. In each case, it is assumed that the diversity branches are independent and that the channel state information (CSI) can be recovered perfectly. Also included is an analysis of MRC when the diversity branches are correlated-the cutoff rate and a tight upper bound on the pairwise error probability are derived. It is shown that with double diversity a branch correlation coefficient as high as 0.5 results in only slight performance degradation  相似文献   

12.
In this paper, optimum and suboptimum diversity combining schemes for coherent and differential M-ary phase-shift keying (M-PSK) transmission impaired by general Ricean fading and impulsive Class-A noise are derived and analyzed. The proposed suboptimum coherent combining (SCC) and suboptimum noncoherent combining (SNC) schemes yield similar performance as the corresponding optimum combining schemes but require a lower computational complexity. In addition, the novel SCC and SNC strategies achieve large performance gains over conventional maximum ratio combining (MRC) and equal gain combining (EGC), respectively. For MRC and EGC, respectively, we also provide a performance analysis for coherent and differential M-PSK transmissions over general Ricean fading channels with Class-A noise. Furthermore, tight performance upper bounds for the proposed optimum and suboptimum combining schemes are derived.  相似文献   

13.
The authors investigate the bit-error-rate (BER) performance of hybrid direct-sequence/slow-frequency-hopped spread-spectrum multiple-access (DS/SFH-SSMA) systems operating over a multipath Rician-fading channel (which models indoor radio propagation in factories). They consider both phase-shift-keying (PSK) modulation with coherent demodulation and differential phase-shift-keying (DPSK) modulation with noncoherent demodulation. Predetection multipath diversity (maximal ratio combining for coherent reception and equal gain combining for noncoherent reception) and simple interleaved channel coding are employed for improving the BER performance. The BER of both coherent and noncoherent hybrid systems is obtained using a Gaussian interference approximation  相似文献   

14.
On diversity reception over fading channels with impulsive noise   总被引:2,自引:0,他引:2  
In this paper, we analyze the performance of different diversity combining techniques over fading channels with impulsive noise. We use Middleton's Class A model for the noise distribution and adopt two noise models, which assume dependent and independent noise components on each branch. We systematically analyze the performance of maximum ratio combing (MRC), equal gain combining (EGC), selection combining (SC), and post-detection combining (PDC) under these impulsive noise models, and derive insightful lower and upper bounds. We show that even under impulsive noise, the diversity order is retained for each combining scheme. However, we also show that under both models, there is a fundamental tradeoff between diversity gain and coding gain. Under the independent noise model, PDC is shown to combat impulsive noise more effectively than MRC, EGC, and SC. Our simulation results also corroborate our analysis.  相似文献   

15.
This work derives the average bit error rate (BER) of the uplink and downlink multicarrier code division multiple access (MC-CDMA) systems using maximum ratio combining (MRC) and equal gain combining (EGC) with synchronization errors over fading channels. The derived equation can simultaneously incorporate the parameters of the fading channel and all of the synchronization errors, including frequency offset, carrier phase jitter, and timing jitter. Numerical results indicate that those two combining schemes on the uplink and downlink MC-CDMA systems are degraded by all of the normalized synchronization errors over 10−2. The comparison outcomes between MRC and EGC reveal that the MRC generally outperforms EGC in the uplink MC-CDMA system. However, EGC achieves better performance when the number of users is small, the normalized synchronization errors are low and the signal to noise ratio (SNR) is high. In the downlink system, EGC mainly outperforms MRC when the SNR and the number of users are gradually increased and the normalized synchronization errors are low. Therefore, the selection of MRC or EGC depends on the SNR, the synchronization errors and the number of users in uplink and downlink MC-CDMA systems.  相似文献   

16.
In this letter, we study the asymptotic performance of hybrid-selection/maximal-ratio combining (HS/MRC) and postdetection HS/equal-gain combining (HS/EGC) over generalized fading channels for large average signal-to-noise ratios (ASNRs). By evaluating the asymptotic moment generating function of the HS/MRC output SNR at high ASNR, we derive the diversity and coding gains for HS/MRC for a large class of modulation formats and versatile fading conditions, including different types of fading channels and nonidentical SNR statistics across diversity branches. Our analytical results reveal that the diversity gains of HS/MRC and HS/EGC are equivalent to that of MRC, and the difference in the coding gains for different modulation formats is manifested in terms of a modulation factor defined in this letter. Some new analytical results about effects of the number of combined branches for HS/MRC and noncoherent combining loss of HS/EGC are also provided.  相似文献   

17.
In this paper, the bit-error rate (BER) performance and capacity of asynchronous space-time block-coded (STBC) multicarrier code-division multiple-access (MC-CDMA) systems in the presence of carrier frequency offset (CFO) between the transmitter and receiver oscillators are analyzed. The exact BER expression when using equal gain combining (EGC) and the approximate BER expression when using maximum ratio combining (MRC) are derived. These BER expressions are verified through simulations. Using these derived expressions, the achievable system capacity satisfying a minimum BER requirement can be studied for the two cases when EGC and MRC are used and, hence, it is possible to compare the achievable capacity of STBC MC-CDMA systems with that of MC-CDMA systems. It is concluded that small CFO has an insignificant effect on the BER and capacity of STBC MC-CDMA systems and that this range of CFO is important in transceiver design. Besides, STBC MC-CDMA systems with multiple receive antennas can achieve higher capacity than that of the MC-CDMA systems; this amount can be obtained analytically using the theoretical BER expressions derived.  相似文献   

18.
The combined effects of postdetection diversity reception and concatenated channel coding are experimentally evaluated for π/4-shift QDPSK signal transmission over a Rayleigh fading channel. Two-branch postdetection diversity reception using maximal ratio combining (MRC) and selection combining (SC) are considered. The concatenated channel coding uses the Reed-Solomon (15,k) code of GP(2 4) as the outer code and the BCH (7,4) code as the inner code (k=9,11,13). Measured bit error rate (BER) performance results are presented under cochannel interference (CCI) and multipath channel delay spread, as well as additive white Gaussian noise (AWGN)  相似文献   

19.
Supporting visual data applications in the real-time communication systems are among the most challenging issues over the next generation wireless communication systems. This challenge is further magnified by the fact that the quality of reception is highly sensitive to transmission delay, data losses and bit error rate (BER) in such applications. In this paper, we proposed Superposition Coding with Receiver Diversity (SPC-RD) scheme, which employs unequal error protection (UEP) to improve the error performance, maximize the received signal to noise ratio (SNR) and optimize the reliability of the transmission system. In the transmitter side, the visual data is divided into a number of different priority layers based on their effects on the reception quality. These layers are modulated individually where the highest priority layer is modulated with the highest UEP level against error-prone channels, and vice versa. These modulated signals are then superimposed together and transmitted via wireless Single-Input Multiple-Output (SIMO) Rayleigh fading channel. In the receiver side, three different diversity combining approaches; selection combining (SC), equal gain combining (EGC) and maximal ratio combining (MRC) are considered. The combined signal is then passed through a multiuser demodulator so-called the ordered successive interference cancellation (O-SIC) demodulator to reconstruct and separate the data layers. This demodulation technique is evaluated and compared with the traditionally maximum likelihood joint detection (MLJD) technique. Extensive simulations have been carried out to validate the various assertions. Under the assumption of equal transmission power, the simulation results illustrate that the proposed SPC-RD scheme provides a SNR gain of 14.5 dB over the Rayleigh fading channel at the diversity order of three for the acceptable BER level of 10?3 when BPSK scheme is exploited compared to the traditional equal error protection system. In addition, the proposed scheme with O-SIC demodulation technique achieves almost similar performance compared to MLJD technique but using less computational complexity.  相似文献   

20.
We study the performance of L-branch equal-gain combining (EGC) and maximal-ratio combining (MRC) receivers operating over nonidentical Weibull-fading channels. Closed-form expressions are derived for the moments of the signal-to-noise ratio (SNR) at the output of the combiner and significant performance criteria, for both independent and correlative fading, such as average output SNR, amount of fading and spectral efficiency at the low power regime, are studied. We also evaluate the outage and the average symbol error probability (ASEP) for several coherent and noncoherent modulation schemes, using a closed-form expression for the moment-generating function (mgf) of the output SNR for MRC receivers and the Pade/spl acute/ approximation to the mgf for EGC receivers. The ASEP of dual-branch EGC and MRC receivers is also obtained in correlative fading. The proposed mathematical analysis is complimented by various numerical results, which point out the effects of fading severity and correlation on the overall system performance. Computer simulations are also performed to verify the validity and the accuracy of the proposed theoretical approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号