首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is demonstrated that the voltage coefficients of capacitance (VCC) in high-/spl kappa/ metal-insulator-metal (MIM) capacitors can be actively engineered and voltage linearity can be significantly improved maintaining high capacitance density, by using a stacked insulator structure of high-/spl kappa/ and SiO/sub 2/ dielectrics. A MIM capacitor with capacitance density of 6 fF/spl mu/m/sup 2/ and quadratic VCC of only 14 ppm/V/sup 2/ has been demonstrated together with excellent frequency and temperature dependence (temperature coefficients of capacitance of 54 ppm /spl deg/C) as well as low leakage current of less than 10 nA/cm/sup 2/ up to 4 V at 125 /spl deg/C.  相似文献   

2.
A high-density metal-insulator-metal (MIM) capacitor with a lanthanide-doped HfO/sub 2/ dielectric prepared by physical vapor deposition (PVD) is presented for the first time. A significant improvement was shown in both the voltage coefficient of capacitance (VCC) and the leakage current density of MIM capacitor, yet the high capacitance density of HfO/sub 2/ dielectrics was maintained by achieving the doping of Tb with an optimum concentration in HfO/sub 2/. This technique allows utilizing thinner dielectric film in MIM capacitors and achieving a capacitance density as high as 13.3 fF//spl mu/m/sup 2/ with leakage current and VCC values that fully meet requirements from year 2005 for radio frequency (RF) bypass capacitors applications.  相似文献   

3.
Metal-insulator-metal (MIM) capacitors with (HfO/sub 2/)/sub 1-x/(Al/sub 2/O/sub 3/)/sub x/ high-/spl kappa/ dielectric films were investigated for the first time. The results show that both the capacitance density and voltage/temperature coefficients of capacitance (VCC/TCC) values decrease with increasing Al/sub 2/O/sub 3/ mole fraction. It was demonstrated that the (HfO/sub 2/)/sub 1-x/(Al/sub 2/O/sub 3/)/sub x/ MIM capacitor with an Al/sub 2/O/sub 3/ mole fraction of 0.14 is optimized. It provides a high capacitance density (3.5 fF//spl mu/m/sup 2/) and low VCC values (/spl sim/140 ppm/V/sup 2/) at the same time. In addition, small frequency dependence, low loss tangent, and low leakage current are obtained. Also, no electrical degradation was observed for (HfO/sub 2/)/sub 1-x/(Al/sub 2/O/sub 3/)/sub x/ MIM capacitors after N/sub 2/ annealing at 400/spl deg/C. These results show that the (HfO/sub 2/)/sub 0.86/(Al/sub 2/O/sub 3/)/sub 0.14/ MIM capacitor is very suitable for capacitor applications within the thermal budget of the back end of line process.  相似文献   

4.
For the first time, we successfully fabricated and demonstrated high performance metal-insulator-metal (MIM) capacitors with HfO/sub 2/-Al/sub 2/O/sub 3/ laminate dielectric using atomic layer deposition (ALD) technique. Our data indicates that the laminate MIM capacitor can provide high capacitance density of 12.8 fF//spl mu/m/sup 2/ from 10 kHz up to 20 GHz, very low leakage current of 3.2 /spl times/ 10/sup -8/ A/cm/sup 2/ at 3.3 V, small linear voltage coefficient of capacitance of 240 ppm/V together with quadratic one of 1830 ppm/V/sup 2/, temperature coefficient of capacitance of 182 ppm//spl deg/C, and high breakdown field of /spl sim/6 MV/cm as well as promising reliability. As a result, the HfO/sub 2/-Al/sub 2/O/sub 3/ laminate is a very promising candidate for next generation MIM capacitor for radio frequency and mixed signal integrated circuit applications.  相似文献   

5.
A very high density of 23 fF//spl mu/m/sup 2/ has been measured in RF metal-insulator-metal (MIM) capacitors which use high-/spl kappa/ TaTiO as the dielectric. In addition, the devices show a small reduction of 1.8% in the capacitance, from 100 kHz to 10 GHz. Together with these characteristics the MIM capacitors show low leakage currents and a small voltage-dependence of capacitance at 1 GHz. These TaTiO MIM capacitors should be useful for precision RF circuits.  相似文献   

6.
The frequency dependence of PECVD nitride and LPCVD oxide metal-insulator-metal (MIM) capacitors is investigated with special attention for precision analog applications. At measurement frequencies of 1.0 MHz, nitride MIM capacitors show capacitance linearity close to that of oxide MIM capacitors, indicating potential for precision analog circuit applications. Due to dispersion effects, however, nitride MIM capacitors show significant degradation in capacitor linearity as the frequency is reduced, which leads to accuracy limitations for precision analog circuits. Oxide MIM capacitors are essentially independent of frequency  相似文献   

7.
Metal-insulator-metal (MIM) capacitors with a 56 nm thick HfO2 high-κ dielectric film have been fabricated and demonstrated for the first of time with a low thermal budget (~200°C). Voltage linearity, temperature coefficients of capacitance, and electrical properties are all characterized. The results show that the HfO2 MIM capacitor can provide a higher capacitance density than Si3N4 MIM capacitor while still maintaining comparable voltage and temperature coefficients of capacitance. In addition, a low leakage current of 2×10-9 A/cm2 at 3 V is achieved. All of these make the HfO 2 MIM capacitor to be very suitable for use in silicon RF and mixed signal IC applications  相似文献   

8.
Using high-/spl kappa/ Al/sub 2/O/sub 3/ doped Ta/sub 2/O/sub 5/ dielectric, we have obtained record high MIM capacitance density of 17 fF//spl mu/m/sup 2/ at 100 kHz, small 5% capacitance reduction to RF frequency range, and low leakage current density of 8.9/spl times/10/sup -7/ A/cm/sup 2/. In combination of both high capacitor density and low leakage current density, a very low leakage current of 5.2/spl times/10/sup -12/ A is calculated for a typical large 10 pF capacitor used in RF IC that is even smaller than that of a deep sub-/spl mu/m MOSFET. This very high capacitance density with good MIM capacitor characteristics can significantly reduce the chip size of RF ICs.  相似文献   

9.
Metal-insulator-metal (MIM) capacitors with different HfO/sub 2/ thickness have been investigated. The results show that both the capacitance density and voltage coefficients of capacitance (VCCs) increase with decreasing HfO/sub 2/ thickness. In addition, it is found that the VCCs decrease logarithmically with increasing thickness. Furthermore, the MIM capacitor with 10-nm HfO/sub 2/ shows a record high capacitance density of 13 fF//spl mu/m/sup 2/ and a VCC of 607 ppm/V, which can meet the requirement of the International Technology Roadmap for Semiconductors. It can also provide a low leakage current of 5.95 /spl times/ 10/sup -8/A/cm/sup 2/ at room temperature at 1 V, low tangent values below 0.05, and a small frequency dependence. These results indicate that the devices are suitable for use in silicon integrated circuit applications.  相似文献   

10.
To ensure the required capacitance for low-power DRAMs (dynamic RAMs) beyond 4 Mb, three kinds of capacitor structures are proposed: (a) poly-Si/SiO2/Ta2O5/SiO2 /poly-Si or poly-Si/Si3N4/Ta2O 5/SiO2/poly-Si (SIS), (b) W/Ta2O5 /SiO2/poly-Si (MIS), and (c) W/Ta2O5 W (MIM). The investigation of time-dependent dielectric breakdown and leakage current characteristics indicates that capacitor dielectrics that have equivalent SiO2 thicknesses of 5, 4, and 3 nm can be applied to 3.3-V operated 16-Mb DRAMs having stacked capacitor cells (STCs) by using SIS, MIS, and MIM structures, respectively, and that 3 and 1.5 nm can be applied to 1.5-V operated 64-Mb DRAMs having STCs by using MIS and MIM structures, respectively. This can be accomplished while maintaining a low enough leakage current for favorable refresh characteristics. In addition, all these capacitors show good heat endurance at 950°C for 30 min. Therefore, these capacitors allow the fabrication of low-power high-density DRAMs beyond 4 Mb using conventional fabrication processes at temperatures up to 950°C. Use of the SIS structure confirms the compatability of the fabrication process of a storage capacitor using Ta2O5 film and the conventional DRAM fabrication processes by successful application to the fabrication process of an experimental memory array with 1.5-μm×3.6-μm stacked-capacitor DRAM cells  相似文献   

11.
We demonstrate a high-performance metal-high /spl kappa/ insulator-metal (MIM) capacitor integrated with a Cu/low-/spl kappa/ backend interconnection. The high-/spl kappa/ used was laminated HfO/sub 2/-Al/sub 2/O/sub 3/ with effective /spl kappa/ /spl sim/19 and the low-/spl kappa/ dielectric used was Black Diamond with /spl kappa/ /spl sim/2.9. The MIM capacitor (/spl sim/13.4 fF//spl mu/m/sup 2/) achieved a Q-factor /spl sim/53 at 2.5 GHz and 11.7 pF. The resonant frequency f/sub r/ was 21% higher in comparison to an equivalently integrated Si/sub 3/N/sub 4/-MIM capacitor (/spl sim/0.93 fF//spl mu/m/sup 2/) having similar capacitance 11.2 pF. The impacts of high-/spl kappa/ insulator and low-/spl kappa/ interconnect dielectric on the mechanism for resonant frequency improvement are distinguished using equivalent circuit analysis. This letter suggests that integrated high-/spl kappa/ MIM could be a promising alternative capacitor structure for future high-performance RF applications.  相似文献   

12.
Metal-insulator-metal (MIM) capacitors are fabricated using sputtered HfO/sub 2/ with Ta and TaN for top and bottom electrodes, respectively. High-capacitance densities from 4.7 to 8.1 fF//spl mu/m/sup 2/ have been achieved while maintaining the leakage current densities around 1 /spl times/ 10/sup -8/ A/cm/sup 2/ within the normal circuit bias conditions. A guideline for the insulator thickness and its dielectric constant has been obtained by analyzing the tradeoff between the linearity coefficient and the capacitance density.  相似文献   

13.
High-performance metal-insulator-metal capacitors using atomic layer-deposited HfO/sub 2/-Al/sub 2/O/sub 3/ laminate are fabricated and characterized for RF and mixed-signal applications. The laminate capacitor can offer high capacitance density (12.8 fF//spl mu/m/sup 2/) up to 20 GHz, low leakage current of 4.9/spl times/10/sup -8/ A/cm/sup 2/ at 2 V and 125/spl deg/C, and small linear voltage coefficient of capacitance of 211 ppm/V at 1 MHz, which can easily satisfy RF capacitor requirements for year 2007 according to the International Technology Roadmap for Semiconductors. In addition, effects of constant voltage stress and temperature on leakage current and voltage linearity are comprehensively investigated, and dependences of quadratic voltage coefficient of capacitance (/spl alpha/) on frequency and thickness are also demonstrated. Meanwhile, the underlying mechanisms are also discussed.  相似文献   

14.
This letter reports on 1.5-V single work-function W/WN/n/sup +/-poly gate CMOS transistors for high-performance stand-alone dynamic random access memory (DRAM) and low-cost low-leakage embedded DRAM applications. At V/sub dd/ Of 1.5-V and 25/spl deg/C, drive currents of 634 /spl mu/A//spl mu/m for 90-nm L/sub gate/ NMOS and 208 /spl mu/A-/spl mu/m for 110-nm L/sub gate/ buried-channel PMOS are achieved at 25 pA//spl mu/m off-state leakage. Device performance of this single work function technology is comparable to published low leakage 1.5-V dual work-function technologies and 25% better than previously reported 1.8-V single work-function technology. Data illustrating hot-carrier immunity of these devices under high electric fields is also presented. Scalability of single work-function CMOS device design for the 90-nm DRAM generation is demonstrated.  相似文献   

15.
The authors have obtained good MIM capacitor integrity of high-capacitance density of 10 fF//spl mu/m/sup 2/ using high-/spl kappa/ AlTaO/sub x/ fabricated at 400/spl deg/C. In addition, small voltage dependence of capacitance of <600 ppm (quadratic voltage coefficient of only 130 ppm/V/sup 2/) is obtained at 1 GHz using their mathematical derivation from measured high-frequency S parameters. These good results ensure the high-/spl kappa/ AlTaO/sub x/ MIM capacitor technology is useful for high-precision circuits operated at the RF frequency regime.  相似文献   

16.
We have investigated the electrical characteristics of Al2 O3 and AlTiOx MIM capacitors from the IF (100 KHz) to RF (20 GHz) frequency range. Record high capacitance density of 0.5 and 1.0 μF/cm2 are obtained for Al2 O3 and AlTiOx MIM capacitors, respectively, and the fabrication process is compatible to existing VLSI backend integration. However, the AlTiOx MIM capacitor has very large capacitance reduction at increasing frequencies. In contrast, good device integrity has been obtained for the Al2O3 MIM capacitor as evidenced from the small frequency dependence, low leakage current, good reliability, small temperature coefficient, and low loss tangent  相似文献   

17.
A new plate biasing scheme is described which allowed the use of 65% higher supply voltage without increasing the leakage current for the UV-O/sub 3/ and O/sub 2/ annealed chemical-vapor-deposited tantalum pentaoxide dielectric film capacitors in stacked DRAM cells. Dielectric leakage was reduced by biasing the capacitor plate electrode to a voltage lower than the conventionally used value of V/sub cc//2. Ta/sub 2/O/sub 5/ films with 3.9 nm effective gate oxide, 8.5 fF//spl mu/m/sup 2/ capacitance and <0.3 /spl mu/A/cm/sup 2/ leakage at 100/spl deg/C and 3.3 V supply are demonstrated.<>  相似文献   

18.
A 1.2-V 72-Mb double data rate 3 (DDR3) SRAM achieves a data rate of 1.5 Gb/s using dynamic self-resetting circuits. Single-ended main data lines halve the data line precharging power dissipation and the number of data lines. Clocks phase shifted by 0/spl deg/, 90/spl deg/, and 270/spl deg/ are generated through the proposed clock adjustment circuits. The latter circuits make input data sampled with an optimized setup/hold window. On-chip input termination with a linearity error of /spl plusmn/4.1% is developed to improve signal integrity at higher data rates. A 1.2-V 1.5-Gb/s 72-Mb DDR3 SRAM is fabricated in a 0.10-/spl mu/m CMOS process with five metals. The cell size and the chip size are 0.845 /spl mu/m/sup 2/ and 151.1 mm/sup 2/, respectively.  相似文献   

19.
Metal-insulator-metal (MIM) capacitors fabricated with (8%) La-doped HfO2 single layer as well as HfLaO/ LaAlO3/HfLaO multilayer dielectric stack are demonstrated. While the La-doped HfO2 single layer is crystallized at 420°C annealing, HfLaO/LaAlO3/HfLaO multilayer dielectric stack remains amorphous. A high dielectric-constant value of 38 can be obtained when 8% La-doped HfO2 is crystallized into cubiclike structure. However, it is observed that the linearity of MIM capacitor is degraded upon crystallization. The multilayer film has lower average dielectric constant but shows low quadratic voltage linearity of less than 1000 ppm/V2 up to a capacitance density of 9 fF/?m2 . It is observed that the HfLaO single-layer MIM is suitable for the applications with requirements of high capacitance density and robust reliability, while the multilayer MIM is suitable for a precision circuit.  相似文献   

20.
The sensor described includes a four-arm piezoresistance bridge circuit, an amplifier, and a bridge excitation circuit. This circuit is used to stabilize changes in sensitivity due to variations in temperature and supply voltage. The sensor was fabricated using a self-aligned double-poly Si gate p-well CMOS process combined with an electrochemical etch-stop technique using N/SUB 2/H/SUB 4/-H/SUB 2/O anisotropic etchant for the thin-square diaphragm formation. The silicon wafer was electrostatically adhered to a glass plate to minimize thermally induced stress. Less than a /spl plusmn/0.5% sensitivity shift and less than a /spl plusmn/5-mV offset shift were obtained in the 0-70/spl deg/C range, with a 1-V/kg/cm/SUP 2/ pressure sensitivity. By using a novel excitation technique, a sensitivity change of less than /spl plusmn/1.5% under a /spl plusmn/10% supply voltage variation was also achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号