首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
A Kenics® KMX static mixer that has curved-open blade internal structure was investigated to study its hydrodynamic performance related to residence time distribution and liquid holdup in a gas/liquid system. The static mixer reactor had 24 mixing elements arranged in line along the length of the reactor such that the angle between two neighboring elements is 90°. The length of the reactor was 0.98 m with an internal diameter of 3.8 cm and was operated cocurrently with vertical upflow. The fluids used were hydrogen (gas phase), monochlorobenzene (liquid phase) and hydrogenated nitrile butadiene rubber solution (liquid phase). In all the experiments, the polymer solution was maintained as a continuous phase while hydrogen gas was in the dispersed phase. All experiments were conducted in the laminar flow regime with the liquid side hydraulic Reynolds number in the range of 0.04-0.36 and the gas side hydraulic Reynolds number in the range of 3-18. Different polymer concentrations and different operating conditions with respect to gas/liquid flow rates were used to study the corresponding effects on the hydrodynamic parameters such as Peclet number (Pe) and the liquid holdup (εL). Empirical correlations were obtained for the axial dispersion coefficient (Da) and liquid holdup in liquid system alone and for the gas/liquid system separately. It was observed that the Peclet number decreased with the introduction of gas in to the reactor while in the liquid system alone, an increase in viscosity decreased the Peclet number. The liquid holdup was empirically correlated as a function of the physical properties of the fluids used in addition to the operating flow rates.  相似文献   

2.
The liquid phase mixing flow pattern at low (20 < Re < 120) and intermediate liquid flow rate (120 < Re < 400) was studied by means of residence time distribution (RTD) experimental curve in an up-flow Filter Press electrochemical reactor (FM01-LC) bench scale. For this purpose, a plastic turbulence promoter was used with stainless-steel and platinised titanium structural meshes as electrodes in channel configuration. To visualize and determine the mixing flow pattern in the liquid phase, the stimulus-response technique was employed using dextran blue (DM = 1.058 × 10−11 m2 s−1, 25 °C, in water) as model tracer. A theoretical analysis and approximation RTD experimental curves with axial dispersion model (ADM) and plug dispersion exchange model (PDE), with “closed-closed vessel” boundary conditions were used in order to establish a better approximation of the axial dispersion, stagnant zones, channelling and by-pass (preference flow) effects present at low and intermediate Re. RTD curves show that the liquid flow pattern in the FM01-LC deviates considerably from axial dispersion model at low Re, where the FM01-LC exhibits large channelling, stagnant zones, and dead zone. The PDE model represents fairly this deviation from ideal flow (less dead zone).  相似文献   

3.
The residence time distribution (RTD) of the liquid phase for co-current gas–liquid upflow in a Kenics static mixer (KSM) with air/water and air/non-Newtonian fluid systems was investigated. The effect of liquid and gas superficial velocities on liquid holdup and Peclet number was studied. Experiments were conducted in three KSMs of diameter 2.54 cm with 16 elements and 5.08 cm diameter with 8 and 16 elements, respectively, of constant Le/De = 1.5 for different liquid and gas velocities. A correlation was developed for Peclet number, in terms of generalized liquid Reynolds number, gas Froude number and liquid Galileo number, where as for liquid holdup, a correlation was developed as a function of gas Reynolds number. The axial dispersion model was found to be in good agreement with the experimental data.  相似文献   

4.
The residence time distribution (RTD) of liquid phase in trickle bed reactors has been measured for air‐water system using radioisotope tracer technique. Experiments were carried out in a glass column of internal diameter of 0.152 m packed with glass beads and actual catalyst particles of two different shapes. From the measured RTD curves, mean residence time of liquid was calculated and used to estimate liquid holdup. The axial dispersion model was used to simulate the experimental data and estimate mixing index, ie. Peclet number. The effect of liquid and gas flow rates on total liquid holdup and Peclet number has been investigated. Results of the study indicated that shape of the packing has significant effect on holdup and axial dispersion. Bodenstein number has been correlated to Reynolds number, Galileo number, shape and size of the packing.  相似文献   

5.
Mass transfer rates were determined in a 3.4 cm i.d. trickle-bed reactor in the absence of reaction by absorption measurements and in presence of reaction. Gas flow rates were varied from 0-100 l/h and liquid flow rates from 0-1.5 l/h. The catalyst particles were crushed to an average diameter of 0.054 and 0.09 cm. Mass transfer coefficients remained unaffected by change in gas flow rate but increased with liquid rate. The data from absorption measurements were evaluated with predictions based upon plug-flow and axial dispersion model. Mass transfer coefficients were found greater in case of axial dispersion model than that of plug-flow model specially at low Reynolds number (Re1 < 1).Hydrogenation of α-methylstyrene to cumene using a Pd/Al2O3 catalyst was taken as a model reaction. Intrinsic kinetic studies were made in a laboratory-stirred-autoclave. Mass transfer coefficients were determined using these intrinsic kinetic data from the process kinetic measurements in trickle-bed reactor. Mass transfer coefficients under reaction conditions were found to be considerably higher than those obtained by absorption measurements.Correlations were suggested for predicting mass transfer coefficients at low Reynolds number.The gas to liquid mass transfer coefficients for lower gas and liquid flow rates were determined in a laboratory trickle-bed reactor. The effect of axial dispersion on mass transfer was considered in order to evaluate the experimental data. Three correlations were formulated to calculate the mass transfer coefficients, which included the effect of liquid loading, particle size and the properties of the reacting substances. The gas flow rate influences the gas to liquid mass transfer only in the region of low gas velocities. In the additional investigations of gas to liquid mass transfer without reaction in trickle-bed reactor, the mass transfer coefficients were determined under reaction conditions and the intrinsic kinetics was studied in a laboratory scale stirred autoclave with suspended catalyst. A few correlations are formulated for the mass transfer coefficients. A comparison with the gas-liquid mass transfer coefficient obtained by absorption measurements showed considerable deviations, which were illustrated phenomenologically.  相似文献   

6.
A multistage, mechanically stirred column absorber has been designed and built with a modular construction, based on preliminary experiments with a test column. The column has been characterized as a gas-liquid contactor by its gas holdup, gas and liquid axial dispersion, mixing times, oxygen transfer coefficients and power consumptions, determined as a function of gas velocity, liquid velocity and impeller speed for one and two impellers per stage.Gassed power was correlated with ungassed power, gas rate and impeller speed. The gas phase axial mixing was essentially plug flow and the liquid phase axial mixing varied between 5 and 12 equivalent stages.Oxygen transfer coefficients were correlated with power consumptions and aeration rates by the equation KLa γ (P/V)asg)b. The oxygen transfer coefficients with single stiffer stages were 25% above those for the double stirrer stages for equal power consumption and gas rates. Except for the low aeration and high power consumption extremes, the column showed superior oxygen transfer performance. in comparison to tubular loop and tank fermenters.  相似文献   

7.
Experimental investigations have been carried out in Reversed Flow Jet Loop Reactor (RFJLR) to study the influence of liquid flow rate, gas flow rate, immersion height of two‐fluid nozzle in reactor and nozzle diameter on gas holdup without circulation, that is, gas–liquid mixture in draft tube only (Egd) and gas holdup with circulation loop (Eg). Also critical liquid flow rate required for transition from draft tube to circulation loop has been determined. Gas holdup was measured by isolation valve technique. Gas holdup in draft tube and circulation loop increased with increase in liquid flow rate and gas flow rate. It is observed that the increased flow rate is required for achieving a particular value of gas holdup with larger nozzle diameter. Nozzle at the top edge of draft tube have higher gas holdup as compared to other positions. It has been noted that, no significant recirculation of gas bubbles into the top of draft tube from annulus section has been observed till a particular liquid flow rate is reached. A plot of gas holdup with no circulation and with circulation mode determines minimum liquid flow rate required to achieve complete circulation loop. Critical liquid flow rate required to achieve complete circulation loop increases with increase in gas flow rate and is minimum at lowest immersion height of two‐fluid nozzle.  相似文献   

8.
The results of an experimental study on the axial dispersion of gases flowing in helical columns under laminar flow conditions are reported. The ranges of variables covered are 26.6 < λ < 98; 10 < NRe < 100; 0.176 < NSc < 1.359. The measured dispersion coefficients are correlated with Reynolds, Schmidt and Dean groups. A single dimensionless parameter, NDc (NSe0,5, was found to correlate the data well. Up to NDe (NSc)0,5 =10, dispersions in straight and coiled tubes exhibit very similar axial dispersion behavior.  相似文献   

9.
Global hydrodynamic characteristics, liquid mixing and gas‐liquid mass transfer for a 63 L split‐rectangular airlift reactor were studied. Correlations for gas holdup and overall liquid circulation velocity were derived for the air‐water system as a function of the specific power input; these were compared to data and correlations for reactor volumes between 4.7 L and 4600 L. A partial recirculation of small bubbles in the riser was observed when Ugr > 0.03 m/s, which was attributed to the use of a single‐orifice nozzle as the gas phase distributor. The dimensionless mixing time and the overall axial dispersion coefficient were nearly constant for the range of gas flow rates studied. However, values of KL/dB were greater than those reported in previous studies and this is caused by the partial recirculation of the gas phase in the riser. While scale effects remain slight, the use of a gas distributor favouring this partial recirculation seems adequate for mass transfer in split‐rectangular airlift reactors.  相似文献   

10.
11.
This paper presents the results of an experimental study on the gas holdup and the liquid phase axial dispersion coefficient in a narrow packed and unpacked rectangular bubble column. In both cases the gas and liquid flow rates were varied and the data were obtained by employing standard tracer technique. The gas holdup and the axial dispersion coefficient for both the packed and unpacked columns were found to be dependent on the gas and liquid flow rates. For given gas and liquid velocities and a given packing size in the case of the packed column, the rectangular column gave significantly higher dispersion coefficients than a cylindrical column of the equivalent cross sectional area. This result agrees very well with the one predicted by the velocity distribution model. The correlations for the Peclet number, the axial dispersion coefficient, and the fluid holdup for both the unpacked and packed bubble columns are presented.  相似文献   

12.
This paper intends to study the single phase axial dispersion in pulsed sieve plate column using a combination of computational fluid dynamics (CFD) simulations and experimental measurements. Experiments and CFD simulations were conducted on 0.076 m diameter pilot scale column having standard geometry of 0.05 m plate spacing, 0.003 m hole diameter and 0.21 fractional free area. The effect of density of tracer solution and radial probe position on axial dispersion coefficient has been studied to ensure precision of the experimental measurement method. The effect of pulse velocity from 0.01 to 0.025 m/s and superficial velocity of water from 0.01 to 0.03 m/s has been studied. Simulations were carried out using commercial CFD software, FLUENT 6.2.16, with standard k? model for turbulence. An unsteady state tracer injection technique was used for axial dispersion measurement. The range of velocity ratio (ψ = Reo/Ren) employed in this work was 1–4 which is very low. Therefore the effect of superficial velocity, Vc was found to be greater than pulse velocity. These results were critically compared with published data and it has been found that single phase axial dispersion coefficient is directly proportional to effective velocity (Af + 0.5 Vc). The presented CFD predictions and validation with experimental data will provide useful basis for further work on single phase axial dispersion with various geometrical parameters and understanding the two phase flow patterns in pulsed sieve plate column.  相似文献   

13.
The effects of certain pertinent parameters such as gas and liquid flow rates and nozzle position on the behavior of a down‐flow jet loop reactor (DJR) have been studied. The mean residence times of gas and liquid phases and the gas holdup within the reactor have been measured. In addition, the overall volumetric mass transfer coefficient, and the influence of the gas flow rate and the position of the nozzle inside the draft tube on the latter has been determined. Correlations have been presented for the gas holdup and kLa which take into account the length of the draft tube and the nozzle immersion height. The kLa values obtained at different power per unit volume (P/V) values in the DJR used in the present study compare favorably with data presented for stirred tanks and bubble columns in the literature. The liquid residence time distribution (RTD) within the reactor has been studied by tracer analysis for various operating conditions and nozzle immersion height and the results are indicative of the high mixing intensities that can be obtained in such reactions. © 2001 Society of Chemical Industry  相似文献   

14.
The airlift reactor is one of the most commonly used gas–liquid two-phase reactors in chemical and biological processes. The objective of this study is to generate different-sized bubbles in an internal loop airlift reactor and characterize the behaviours of the bubbly flows. The bubble size, gas holdup, liquid circulation velocity, and the volumetric mass transfer coefficient of gas–liquid two-phase co-current flow in an internal loop airlift reactor equipped with a ceramic membrane module (CMM) and a perforated-plate distributor (PPD) are measured. Experimental results show that CMM can generate small bubbles with Sauter mean diameter d32 less than 2.5 mm. As the liquid inlet velocity increases, the bubble size decreases and the gas holdup increases. In contrast, PPD can generate large bubbles with 4 mm < d32 < 10 mm. The bubble size and liquid circulation velocity increase as the superficial gas velocity increases. Multiscale bubbles with 0.5 mm < d32 < 10 mm can be generated by the CMM and PPD together. The volumetric mass transfer coefficient kLa of the multiscale bubbles is 0.033–0.062 s−1, while that of small bubbles is 0.011–0.057 s−1. Under the same flow rate of oxygen, the kLa of the multiscale bubbles increases by up to 160% in comparison to that of the small bubbles. Finally, empirical correlations for kLa are obtained.  相似文献   

15.
Multiphase flow hydrodynamics in a novel gas–liquid–solid jet-loop reactor (JLR) were experimentally investigated at the macroscales and mesoscales. The chord length distribution was measured by an optical fiber probe and transformed for bubble size distribution through the maximum entropy method. The impacts of key operating conditions (superficial gas and liquid velocity, solid loading) on hydrodynamics at different axial and radial locations were comprehensively investigated. JLR was found to have good solid suspension ability owing to the internal circulation of bubbles and liquid flow. The gas holdup, axial liquid velocity, and bubble velocity increase with gas velocity, while liquid velocity has little influence on them. Compared with the gas–liquid JLRs, solids decrease the gas holdup and liquid circulation, reduces the bubble velocity and delays the flow development due to the enhanced interaction between bubbles and particles (Stokes number >1). This work also provides a benchmark data for computational fluid dynamics (CFD) model validation. © 2019 American Institute of Chemical Engineers AIChE J, 65: e16537, 2019  相似文献   

16.
Whilst there are numerous experimental, theoretical and computational studies of Taylor flow in microchannels, the intermittent slug–annular regime has largely been neglected. In this paper time-resolved micro-PIV data are collected and used to study the flow characteristics of a gas–liquid system for flow regimes spanning Taylor to annular flow. The experimental work used a 1.73 mm diameter channel with water and nitrogen as the working fluids, for gas and liquid superficial velocity ranges of 0.35–8.65 m s?1 (40<ReG<1000) and 0.071–0.18 m s?1 (120<ReL<300), respectively. Time-averaged velocity profiles were obtained in the liquid film surrounding the gas bubbles (or the gas core in the pseudo-annular flow regime) and in the liquid slugs (which changed from regular slugs to annular rings as the gas superficial velocity was increased). These data showed that the velocity in the liquid film relaxed back to an equilibrium value following the passage of each liquid slug or annular ring. In contrast rather flat velocity profiles were observed in the liquid slug. Based on a simple representation of the flow structure, average gas holdups were estimated using independent experimental data obtained by the micro-PIV technique and by direct observation of the flow structure. A phenomenological model of intermittent slug flow, based on the representation of the flow structure as a train of slugs and bubbles moving over a liquid film, is used to interpret the experimental data. The modelling work highlights the different behaviour of the limiting cases of slug and annular flow, in terms of the gas–liquid interfacial shear and its influence on the pressure field.  相似文献   

17.
An experiment aimed to link the extent of axial mixing in a special configuration bubble column reactor with different liquid properties (water, 10% K2CO3 solution, 20% K2CO3 solution, paraffine). The experimental results proved that, increase of liquid viscosity will delay the mean residence time and weaken gas axial backmixing. Increased surface tension leads to lower flow regime transition point and higher overall gas holdup. Surface tension is the dominant factor to influence of gas axial backmixing degree. A simple RTD model for homogeneous–heterogeneous regime is developed in the column of 0.1 m diameter and the corresponding correlation of gas axial dispersion coefficients is . The model is verified by experiments with air/water/paraffine system. Good agreement is found. As a byproduct, a non-empirical formula for gas holdup results, g/(1−g)4 = 0.579 (ugμ/σ)0.918 (μ4g/ρLσ3)−0.252. But both correlations cannot be available for K2CO3 solution with addition of small quantities of surface tension in pure liquid.  相似文献   

18.
Reasons are given why the axial dispersion in a gas flowing through a packed bed may be influenced by the elasticity - or compressibility - of the fluid. To support this hypothesis, experiments have been done in a packed column at pressures from 0.13 to 2.0 MPa. The elasticity E of a gas is proportional to the pressure P and the compressibility to 1/P. The axial dispersion coefficients as determined were found to be a function of the pressure in the packed bed in the turbulent flow region of 3 < Rep < 150 if the Bodenstein number is plotted as a function of the particle Reynolds number. This is shown to be an artifact. The pressure influence is eliminated, if Bom, ax is plotted versus the ratio of the kinetic forces over the elastic forces ?u2/E. Regrettably, Bom, ax seems to be independent of ?u2/E. For the moment we only can conclude that Bom, ax in the turbulent region is a unique function of the velocity of the gas which flows through the packed bed. Although the fact that a constant Bo value is obtained when plotted against ?u2/E, the experimental results are so intriguing we wanted to make them public already now. The experimental work proceeds.  相似文献   

19.
This article discusses the characteristics of turbulent gas–liquid flow through tubular reactors/contactors equipped with screen‐type static mixers from a macromixing perspective. The effect of changing the reactor configuration, and the operating conditions, were investigated by using four different screen geometries of varying mesh numbers. Residence time distribution experiments were conducted in the turbulent regime (4500 < Re < 29,000). Using a deconvolution technique, the RTD function was extracted to quantify the axial/longitudinal liquid‐phase dispersion coefficient. The findings highlight that axial dispersion increases with an increasing flow rate and/or gas‐phase volume fraction. However, regardless of the number and geometry of the mixing elements, reactor configuration, and/or operating conditions, the recorded liquid‐phase axial dispersion coefficients in the presence of screens was lower than that for an empty pipe. Furthermore, the geometry of the screen was found to directly affect the axial dispersion coefficient in the reactor. © 2016 American Institute of Chemical Engineers AIChE J, 63: 1390–1403, 2017  相似文献   

20.
The barrier‐based distributor is a multiphase flow distributor for a multichannel microreactor which assures flow uniformity and prevents channeling between the two phases. For N number of reaction channels, the barrier‐based distributor consists of a gas manifold, a liquid manifold, N barrier channels for the gas, N barrier channels for the liquid, and N mixers for mixing the phases before the reaction channels. The flow distribution is studied numerically using a method based on the hydraulic resistive networks (RN). The single phase hydraulic RN model (Commenge et al., 2002;48:345–358) is extended for two phases gas‐liquid Taylor flow. For ReGL <30, the accuracy for the model was above 90%. The developed‐model was used to study the effects of fabrication tolerance and barrier channel dimensions. A design methodology has been proposed as an algorithm to determine the required hydraulic resistance in the barrier channels and their dimensions. This methodology is demonstrated using a numerical example. © 2012 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号