首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
A low‐cost microcontroller based control and data acquisition unit for digital image recording of scanning electron microscope (SEM) images and scanning electron microscope based electron beam lithography (EBL) is described. The developed microcontroller low‐level embedded software incorporates major time critical functions for image acquisition and electron beam lithography and makes the unit an intelligent module which communicates via USB with the main computer. The system allows recording of images with up to 4096 × 4096 pixel size, different scan modes, controllable dwell time, synchronization with main power frequency, and other user controllable functions. The electron beam can be arbitrary positioned with 12‐bit precision in both dimensions and this is used to extend the scanning electron microscope capabilities for electron beam lithography. Hardware and software details of the system are given to allow its easy duplication. Performance of the system is discussed and exemplary results are presented.  相似文献   

2.
Vladár AE  Radi Z  Postek MT  Joy DC 《Scanning》2006,28(3):133-141
Experimental nanotips have shown significant improvement in the resolution performance of a cold field emission scanning electron microscope (SEM). Nanotip electron sources are very sharp electron emitter tips used as a replacement for the conventional tungsten field emission (FE) electron sources. Nanotips offer higher brightness and smaller electron source size. An electron microscope equipped with a nanotip electron gun can provide images with higher spatial resolution and with better signal-to-noise ratio. This could present a considerable advantage over the current SEM electron gun technology if the tips are sufficiently long-lasting and stable for practical use. In this study, an older field-emission critical dimension (CD) SEM was used as an experimental test platform. Substitution of tungsten nanotips for the regular cathodes required modification of the electron gun circuitry and preparation of nanotips that properly fit the electron gun assembly. In addition, this work contains the results of the modeling and theoretical calculation of the electron gun performance for regular and nanotips, the preparation of the SEM including the design and assembly of a measuring system for essential instrument parameters, design and modification of the electron gun control electronics, development of a procedure for tip exchange, and tests of regular emitter, sharp emitter and nanotips. Nanotip fabrication and characterization procedures were also developed. Using a "sharp" tip as an intermediate to the nanotip clearly demonstrated an improvement in the performance of the test SEM. This and the results of the theoretical assessment gave support for the installation of the nanotips as the next step and pointed to potentially even better performance. Images taken with experimental nanotips showed a minimum two-fold improvement in resolution performance than the specification of the test SEM. The stability of the nanotip electron gun was excellent; the tip stayed useful for high-resolution imaging for several hours during many days of tests. The tip lifetime was found to be several months in light use. This paper summarizes the current state of the work and points to future possibilities that will open when electron guns can be designed to take full advantage of the nanotip electron emitters.  相似文献   

3.
Oho E  Sugawara T  Suzuki K 《Scanning》2005,27(4):170-175
An improved scanning method for the scanning electron microscope (SEM) is proposed. Here, quincuncial scanning (sampling) instead of a conventional (raster) scanning is used. This scanning method is very effective for quality improvement of an SEM image obtained under undersampling conditions (rough sampling). The present study focuses on characteristics of the human visual system, specifically the low response of eyes in diagonal directions. When using this method coupled with a high-precision interpolation, the number of pixels necessarily doubles. It is not surprising that it is advantageous for printing. A more important advantage is the fact that SEM images can be acquired with a shorter recording time. Hence, this type of scanning will be helpful for quick and frequent recordings in a "snapshot" mode, which up to now has not been achieved successfully by SEM.  相似文献   

4.
Oho E  Miyamoto M 《Scanning》2004,26(5):250-255
A scanning electron microscope (SEM) system equipped with a motor drive specimen stage fully controlled with a personal computer (PC) has been utilized for obtaining ultralow magnification SEM images. This modem motor drive stage works as a mechanical scanning device. To produce ultra-low magnification SEM images, we use a successful combination of the mechanical scanning, electronic scanning, and digital image processing techniques. This new method is extremely labor and time saving for ultra-low magnification and wide-area observation. The option of ultra-low magnification observation (while maintaining the original SEM functions and performance) is important during a scanning electron microscopy session.  相似文献   

5.
Egerton  & Wan 《Journal of microscopy》1998,191(2):113-115
We describe a PC-based active-capture system for recording digital images from a scanning electron microscope. The system is based on a National Instruments data-acquisition board and a Pentium computer, controlled by software that we have written in Visual Basic.  相似文献   

6.
The mechanisms of electron beam scattering are examined to evaluate its effect on contrast and resolution in high-pressure scanning electron microscopy (SEM) techniques reported in the literature, such as moist-environment ambient-temperature SEM (MEATSEM) or environmental SEM (ESEM). The elastic and inelastic scattering cross-sections for nitrogen are calculated in the energy range 5–25 keV. The results for nitrogen are verified by measuring the ionization efficiency, and measurements are also made for water vapour. The effect of the scattered beam on the image contrast was assessed and checked experimentally for a step contrast function at 20 kV beam voltage. A considerable degree of beam scattering can be tolerated in high-pressure SEM operation without a significant degradation in resolution. The image formation and detection techniques in high-pressure SEM are considered in detail in the accompanying paper.  相似文献   

7.
8.
Dale E. Newbury 《Scanning》1996,18(7):474-482
The gaseous secondary electron detector (GSED) in the environmental scanning electron microscope (ESEM) permits collection of electron signals from deep inside blind holes in both conducting and insulating materials. The placement of the GSED as the final pressure-limiting aperture of the ESEM creates a situation of apparent illumination along the line of sight of the observer. In principle, any point struck by the primary beam can be imaged. Image quality depends on the depth of the hole. In brass, features at the bottom of a 1.5 mm diameter hole that was 8 mm deep were successfully imaged.  相似文献   

9.
A new generation of scanning electron microscopy (SEM) technology is proposed based on the concept of “active image processing.” In order to collect sufficient data for a purpose which is defined in the utilization of active image processing, we may need more devices from among a variety of useful hardware, for example, a digital scan generator with meaningful parameters and an analog-to-digital converter for ultrahigh density recording. After the data acquisition, the application of some digital image processing techniques is certainly effective, because the method in question is specially designed so that the property of obtained data will be suitable for the application of these techniques. The present technology should produce a variety of attractive options in the field of SEM.  相似文献   

10.
We have developed an instrument control and image acquisition system for use with scanning electron microscopes. By making the system flexible over a wide range of operating voltages, scan generation and image acquisition modes can be easily accommodated to a wide range of instruments. We show the implementation of this system for use with a custom‐built low‐voltage scanning electron microscope. We then explore the simple modifications that are required for control of two instruments intended for use as free electron lasers.  相似文献   

11.
Ishitani T  Sato M 《Scanning》2002,24(4):191-203
The two conventional methods currently employed for the evaluation of image resolution in scanning electron microscopy are the gap method and a fast Fourier transform (FFT) method. These can be highly dependent on personal expertise on the distinction between signal information and noise contained in a micrograph. Hence, the present paper proposes an alternative method (referred to as a contrast-to-gradient (CG) method) that can determine the image resolution of a micrograph without requiring personal expertise on the judgment of noise. The image resolution in the CG method is defined as a weighted harmonic mean of the local resolution, which is proportional to the quotient of the threshold contrast divided by the local gradient. The local gradient is calculated from the quadratic function that best fits the local pixel intensities over 5 x 5 pixels. It has been shown that the CG method, compared with the FFT method, has a broader range of applications for various types of images, such as low-contrast, noise-containing, filter-processed, highly directional, and quasi-periodic feature images.  相似文献   

12.
A new smoothing filter has been developed for noise removal of scanning electron microscopy (SEM) images. We call this the complex hysteresis smoothing (CHS) filter. It is much easier to use for SEM operators than any other conventional smoothing filter, and it rarely produces processing artifacts because it does not utilize a definite mask (which usually has processing parameters of size, shape, weight, and the number of iterations) like a common averaging filter or a complicated filter shape in the Fourier domain. Its criterion for distinguishing noise depends simply on the amplitude of the SEM signal. When applied to several images with different characteristics, it is shown that the present method has a high performance with some original advantages.  相似文献   

13.
We demonstrate that the gas-amplified secondary electron signal obtained in the environmental scanning electron microscope has both desired and spurious components. In order to isolate the contributions of backscattered and secondary electrons, two sets of samples were examined. One sample consisted of a pair of materials having similar secondary emission coefficients but different backscatter coefficients, while the other sample had a pair with similar backscatter but different secondary emission coefficients. Our results show how the contribution of the two electron signals varies according to the pressure of the amplifying gas. Backscatter contributions, as well as background due to gas ionization from the primary beam, become significant at higher pressure. Furthermore, we demonstrate that the relative amplification efficiencies of various electron signals are dependent upon the chemistry of the gas.  相似文献   

14.
This paper1 presents a system for remote control of a scanning electron microscope (SEM) over the Internet using the World Wide Web (WWW). The evolution of the SEM to its current incarnation as a PC-SEM is noted, and the World Wide Web is briefly described. The implementation of the authors' system is detailed in terms of configuration and manner of interaction. The potential commercial applications of the research are described. Related work in microscopy and networking fields is considered. A discussion of the advantages of the described system and expected future directions for research and development concludes the paper.  相似文献   

15.
Recent software and hardware advances in the field of electron backscatter diffraction have led to an increase in the rate of data acquisition. Combining automated stage movements with conventional beam control have allowed researchers to collect data from significantly larger areas of samples than was previously possible. This paper describes a LabVIEW? and AutoIT© code which allows for increased flexibility compared to commercially available software. The source code for this software has been made available in the online version of this paper.  相似文献   

16.
Cazaux J 《Scanning》2004,26(4):181-203
This paper is an attempt to analyse most of the complicated mechanisms involved in charging and discharging of insulators investigated by scanning electron microscopy (SEM). Fundamental concepts on the secondary electron emission (SEE) yield from insulators combined with electrostatics arguments permit to reconsider, first, the widespread opinion following which charging is minimised when the incident beam energy E0 is chosen to be equal to the critical energy E(o)2, where the nominal total yield delta(o) + eta(o) = 1. For bare insulators submitted to a defocused irradiation, it is suggested here that the critical energy under permanent irradiation EC2 corresponds to a range of primary electrons, R, and nearly equals the maximum escape depth of the secondary electrons, r. This suggestion is supported by a comparison between published data of the SEE yield delta(o) of insulators (short pulse experiments) and experimental results obtained from a permanent irradiation for EC2. New SEE effects are also predicted at the early beginning of irradiation when finely focused probes are used. Practical considerations are also developed, with specific attention given to the role of a contamination layer where a negative charging may occur at any beam energy. The role of the various time constants involved in charging and discharging is also investigated, with special attention given to the dielectric time constant, which explains the dose rate-dependent effects on the effective landing energy in the steady state. Numerical applications permit to give orders of magnitude of various effects, and several other practical consequences are deduced and illustrated. Some new mechanisms for the contrast reversal during irradiation or with the change of the primary electron (PE) energy are also suggested.  相似文献   

17.
Two computer codes for simulating the backscattered, transmitted, and secondary-electron signals from targets in a scanning electron microscope are described. The first code, MONSEL-II, has a model target consisting of three parallel lines on a three-layer substrate, while the second, MONSEL-III, has a model target consisting of a two-by-two array of finite lines on a three-layer substrate. Elastic electron scattering is determined by published fits to the Mott cross section. Both plasmon-generated electrons and ionized valence electrons are included in the secondary production. An adjustable quantity, called the residual energy loss rate, is added to the formula of Joy and Luo to obtain the measured secondary yield. The codes show the effects of signal enhancement due to edge transmission, known as blooming, as well as signal reduction due to neighboring lines, known as the “black-hole” effect.  相似文献   

18.
A novel secondary electron detection system combining a two‐stage detector head and a differential pumping system is presented. The detector head consisted of a scintillation Everhart‐Thornley detector and a microsphere plate, separating it from the lower vacuum in the intermediate chamber (below 0.1 mbar). The system was arranged asymmetrically, which should contribute to a lower gas leakage through the plate and a longer life span of the plate. The system offered all the advantages of the scintillator detector in a wide range of gas pressures, from high vacuum to those of the order of 10 mbar, typical of high‐pressure scanning electron microscopy.  相似文献   

19.
Mathews RG  Donald AM 《Scanning》2002,24(2):75-85
Environmental scanning electron microscopy (ESEM) is a technique capable of imaging volatile and/or insulating samples in their natural state, without prior specimen preparation. It is thus a powerful potential tool for the study of the structure and dynamics of emulsions and other complex liquid systems, at a resolution greater than that obtainable by conventional optical microscopy. We present images of a variety of liquid systems containing micron-scale and smaller features. The morphology of these systems may be clearly discerned. The contrast observed between the liquid phases was consistent with the model proposed by Stokes et al. (1998). The limits of resolution were determined by sample motion and by beam damage effects; under optimum conditions, resolution of a few tens of nanometers was obtained. This compares favourably with conventional and confocal optical microscopy. In some samples, thin films (solid or liquid) could be observed at the liquid/gas interface. Some of these films were so thin that they did not completely obscure the underlying structure of the bulk sample.  相似文献   

20.
J T Thong  K W Lee  W K Wong 《Scanning》2001,23(6):395-402
We describe a vector scanning system to reduce charging effects during scanning electron microscope (SEM) imaging. The vector scan technique exploits the intrinsic charge decay mechanism of the specimen to improve imaging conditions. We compare SEM images obtained by conventional raster scanning versus vector scanning to demonstrate that vector scanning successfully reduces specimen-charging artifacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号