首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A correlative morphologic analysis was carried out on isolated metaphase chromosomes by means of field emission in-lens scanning electron microscopy (FEISEM) and atomic force microscopy (AFM). Whereas FEISEM provides ultra-high resolution power and allows the surface analysis of biological structures free of any conductive coating, the AFM allows imaging of biological specimens in ambient as well as in physiologic conditions. The analysis of the same samples was made possible by the use of electrical conductive and light transparent ITO glass as specimen holder. Further preparation of the specimen specific for the instrumentation was not required. Both techniques show a high correlation of the respective morphologic information, improving their reciprocal biological significance. In particular, the biological coat represents a barrier for surface morphologic analysis of chromosome spreads and it is sensitive to protease treatment. The chemical removal of this layer permits high-resolution imaging of the chromatid fibers but at the same time alters the chromosomal dimension after rehydration. The high-resolution level, necessary to obtain a precise physical mapping of the genome that the new instruments such as FEISEM and AFM could offer, requires homogeneously cleaned samples with a high grade of reproducibility. A correlative microscopical approach that utilizes completely different physical probes provides complementary useful information for the understanding of the biological, chemical, and physical characteristics of the samples and can be applied to optimize the chromosome preparations for further improvement of the knowledge about spatial genome organization.  相似文献   

2.
3.
We present a critical review of methods for defining the chemical environment during liquid cell electron microscopy investigation of electron beam induced nanomaterial growth and degradation. We draw from the radiation chemistry and liquid cell electron microscopy literature to present solution chemistry and electron beam–based methods for selecting the radiolysis products formed and their relative amount during electron irradiation of liquid media in a transmission electron microscope. We outline various methods for establishing net oxidizing or net reducing reaction environments and propose solvents with minimal overall production of radicals under the electron beam. Exemplary liquid cell electron microscopy experiments in the fields of nanoparticle nucleation, growth, and degradation along with recommendations for best practices and experimental parameters are reported. We expect this review will provide researchers with a useful toolkit for designing general chemistry and materials science liquid cell electron microscopy experiments by ‘directing’ the effect of the electron beam to understand fundamental mechanisms of dynamic nanoscale processes as well as minimizing radiation damage to samples.  相似文献   

4.
Patat JM  Lehuede P  Durand O  Cazaux J 《Scanning》2002,24(3):109-116
Using primary beam energies E0 ranging from 0.2 to 15 keV and an in-lens detector, a series of images of the same region of an artificial microstructured diamond sample have been acquired in scanning electron microscopy. Next, the images were analysed by using a scatter diagram technique to underline the topographic contrast change and contrast reversal. The results obtained from 0.5 to 15 keV are discussed with the help of an expression derived from the constant loss model for the secondary electron yield delta of diamond, but including the respective roles of the angle of incidence, i, and of the angle of detection, alpha. More surprising is the quality of images obtained at a beam energy as low as 0.2 keV, and more difficult to explain is the significant contrast change between 0.2 keV and 0.5 keV. For the first time, scatter diagrams are used as a diagnostic tool in scanning electron microscopy, and after some improvements it is hoped that the experimental approach followed here may lead to quantitative estimates of the local tilts of a specimen surface.  相似文献   

5.
In-situ heating experiments have been conducted at temperatures of approximately 1200 K utilising a new design of scanning electron microscope, the CamScan X500. The X500 has been designed to optimise the potential for electron backscatter diffraction (EBSD) analysis with concomitant in-situ heating experimentation. Features of the new design include an inclined field emission gun (FEG) column, which affords the EBSD geometrical requirement of a high (typically 160 degrees) angle between the incoming electron beam and specimen surface, but avoids complications in heating-stage design and operation by maintaining it in a horizontal orientation. Our studies have found that secondary electron and orientation contrast imaging has been possible for a variety of specimen materials up to a temperature of at least 900 degrees C, without significant degradation of imaging quality. Electron backscatter diffraction patterns have been acquired at temperatures of at least 900 degrees C and are of sufficient quality to allow automated data collection. Automated EBSD maps have been produced at temperatures between 200 degrees C and 700 degrees C in aluminium, brass, nickel, steel, quartz, and calcite, and even at temperatures >890 degrees C in pure titanium. The combination of scanning electron microscope imaging techniques and EBSD analysis with high-temperature in-situ experiments is a powerful tool for the observation of dynamic crystallographic and microstructural processes in metals, semiconductor materials, and ceramics.  相似文献   

6.
Iwano M  Che FS  Takayama S  Fukui K  Isogai A 《Scanning》2003,25(5):257-263
To elucidate the topological positioning of ribosomal RNA genes (rDNA) and nucleolar structure in three dimensions, we examined the localization of rDNA using in situ hybridization (ISH) analysis by scanning electron microscopy (SEM). The rDNA genes within the three-dimensional architecture of nucleoli were detected on chromatin fibers that connect a thick strand-like structure and a protrusion of rDNA into the inner nuclear hole where the nucleolus is formed. This novel use of ISH together with SEM is useful for the analysis of nucleolar structure in detail. Furthermore, rDNA was detected at the periphery of the fibrillar centers (FCs) of the nucleolus using immuno-gold labeling together with transmission electron microscopy (TEM). In situ hybridization with TEM confirmed that rDNA is naked and thus active in the FCs of nucleoli; ISH with SEM confirmed that rDNA is not covered with ribonucleo proteins at the protruding point and is thus inactive. We also show that the distribution pattern of FCs differs from sample to sample. These results indicate that rDNA is transcribed dynamically in a time- and region-specific manner over the course of the cell cycle.  相似文献   

7.
Cell biologists probing the physiologic movement of macromolecules and solutes across the fenestrated microvascular endothelial cell have used electron microscopy to locate the postulated pore within the fenestrae. Prior to the advent of in-lens field-emission high-resolution scanning electron microscopy (HRSEM) and ultrathin m et al coating technology, quick-freeze, platinum-carbon replica and grazing thin-section transmission electron microscopy (TEM) methods provided two-dimensional or indirect imaging methods. Wedge-shaped octagonal channels composed of fibrils interwoven in a central mesh were depicted as the filtering structures of fenestral diaphragms in images of platinum replicas enhanced by photographic augmentation. However, image accuracy was limited to replication of the cell surface. Subsequent to this, HRSEM technology was developed and provided a high-fidelity, three-dimensional topographic image of the fenestral surface directly from a fixed and dried bulk adrenal specimen coated with a 1 nm chromium film. First described from TEM replicas, the “flower-like” structure comprising the fenestral pores was readily visualized by HRSEM. High-resolution images contained particulate ectodomains on the lumenal surface of the endothelial cell membrane. Particles arranged in a rough octagonal shape formed the fenestral rim. Digital acquisition of analog photographic recordings revealed a filamentous meshwork in the diaphragm, thus confirming and extending observations from replica and grazing section TEM preparations. Endothelial cell pockets, first described in murine renal peritubular capillaries, were observed in rhesus and rabbit adrenocortical capillaries. This report features recent observations of fenestral diaphragms and endothelial pockets fitted with multiple diaphragms utilizing a Schottky field-emission electron microscope. In-lens staging of bulk and thin section specimens allowed tandem imaging in HRSEM and scanning TEM modes at 25 kV.  相似文献   

8.
A method for obtaining a semi-quantitative estimation of the amount of colloidal gold label attached to a cell surface is described. The X-ray emission, in a scanning electron microscope, from an even metal coating applied by diode sputter coating is used as an internal standard. The emission from the standard is used to correct for errors which would have arisen due to factors such as variable specimen surface topography. Examples of the semiquantitative estimation of 10-nm gold-labelled wheat-germ agglutinin to L929 murine fibroblast cells are given.  相似文献   

9.
The present study describes the structural components of the bovine vaginal fluid at estrus by scanning electron microscopy (SEM) following critical point- and freeze-drying preparation procedures. Confocal scanning laser microscopy (CLSM) was also used to evaluate the structural integrity of samples, and a control sample was assessed by adding sperm to the vaginal fluid. Samples were collected from 10 cows at the time of artificial insemination, prepared for SEM by using critical point- and freeze-drying procedures, gold coated, and observed by SEM. Mesh size and filament thickness were measured with an image analyzer. Of the 10 samples processed, 4 were considered altered following critical point drying. Compaction and lack of filaments were observed in these samples. A small area of one sample showed a honey comb-like structure when freeze drying was used. Nonoriented filaments with different thicknesses and with a network-like structure were observed throughout the remainder of the samples. Filaments throughout all samples were also observed by CSLM. After critical point drying, the mesh area ranged from 0.8 to 101.4 microns 2; the minor axis from 0.7 to 10.8 microns; and filament thickness from 40 to 442 nm. Using freeze drying, the mesh area ranged from 0.9 to 493.8 microns 2; the minor axis from 0.7 to 27.5 microns; and filament thickness from 40 to 800 nm. When samples were freeze dried, mesh values were similar to the interstrand channels observed by CSLM. In sperm-vaginal fluid samples, following critical point- or freeze-drying procedures, spermatozoa were oriented randomly in the vaginal fluid and did not seem to alter filamentous structure. Our data suggest that the freeze-drying procedure better preserves the true structural dimensions of the vaginal fluid. Furthermore, the filamentous structure of the vaginal fluid does not appear to impede sperm transport.  相似文献   

10.
Nanoindentation experiments inside a transmission electron microscope are of much interest to characterize specific phenomena occuring in materials, like for instance dislocation movements or phase transformations. The key points of these experiments are (i) the sample preparation and the optimization of its geometry to obtain reliable results and (ii) the choice of the transmission electron microscope observation mode, which will condition the type of information which can be deduced from the experiment. In this paper, we will focus on these two key points in the case of nanoindentation of zirconia, which is a ceramic material well known to be sensitive to stress because it can undergo a phase transformation. In this case, the information sought is the stress localization at the nanometre scale and in real time. As far as the sample preparation is concerned, one major drawback of nanoindentation inside a transmission electron microscope is indeed a possible bending of the sample occurring during compression, which is detrimental to the experiment interpretation (the stress is not uniaxial anymore). In this paper, several sample preparation techniques have been used and compared to optimize the geometry of the sample to avoid bending. The results obtained on sample preparation can be useful for the preparation of ceramics samples but can also give interesting clues and experimental approaches to optimize the preparation of other kinds of materials. The second part of this paper is devoted to the second key point, which is the determination of the stress localization associated to the deformation phenomena observed by nanoindentation experiments. In this paper, the use of convergent beam electron diffraction has been investigated and this technique could have been successfully coupled to nanoindentation experiments. Coupled nanoindentation experiments and convergent beam electron diffraction analyses have finally been applied to characterize the phase transformation of zirconia.  相似文献   

11.
Podsiadlo  P.  Stachowiak  G.W. 《Tribology Letters》1998,4(3-4):215-229
A modified Hurst orientation transform (HOT) method for characterization of wear particle surfaces is proposed and described in this paper. The method involves the calculation of self-affine Hurst coefficients in all directions and displays the calculated coefficient values in a form of rose plot. The calculation of individual Hurst coefficients, H, is based on the rescale range (r/s) analysis (r(d)/s∼ d H ). The rose plot is then used to obtain three texture surface parameters, i.e.: texture aspect ratio, texture minor axis and texture direction. The effectiveness of this modified HOT and resulting surface texture parameters was evaluated. The method was first applied to computer-generated images of isotropic and anisotropic particle fractal surfaces and then to field emission scanning electron microscope images of wear particles found in synovial joints. The ability of the surface parameters to reveal surface isotropy or anisotropy, measure roughness and determine the dominant direction of surface texture was assessed. The effects of measurement conditions such as noise, gain variations and focusing on the surface parameters were also investigated. The results demonstrate that the HOT and surface texture parameters developed can successfully be used in the characterization of wear particle surface topography. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
Visualization of structural details of specimens in field emission scanning electron microscopy (FE-SEM) requires optimal conductivity. This paper reports on the differences in conductive layers of Au/Pd, Pt and Cr, with a thickness of 1.5–3.0 nm, deposited by planar magnetron sputtering devices. The coating units were used under standard conditions for source–substrate distance, current, HT and argon pressure. Carbon films, deposited by high-vacuum evaporation on small, freshly cleaved pieces of mica, were used as substrate and mounted on copper grids for TEM and SEM inspection. Au/Pd, Pt and, to a lesser extent, Cr coatings varied in particle density, size and shape. Au/Pd coatings have a slightly more granular appearance than Cr and Pt coatings, but this is strongly dependent on the type of sputtering device employed. In FE-SEM images there is almost no difference in contrast and particle size between the Au/Pd layer and the Pt layers of a similar thickness. The nuclei of Au/Pd are rather small with almost no growth to the sides or in height, making Au/Pd coatings a good alternative to chromium and platinum for FE-SEM of biological tissues because of its higher yield of secondary electrons.  相似文献   

13.
The term “etching,” in electron microscopy, refers to the removal of specimen surface layers and includes chemical, electrolytic, and ion-beam methods. The ion-beam etching process is used to remove layers of a target material by bombarding it with ionized gas molecules. Recently, the method has been applied to the field of biological specimens; however, the practical procedures for such organic materials have not been developed. In the present study, we used an apparatus in which a beam of argon ions is collimated and focused by electrostatic lenses onto an appropriate target. We demonstrated the optimum conditions to observe biological specimens that were treated with osmium tetroxide and tannic acid. The specimens were examined uncoated at low accelerating voltage using a field emission scanning electron microscope. According to our experiments, when a biological specimen was observed under high-resolution conditions at over 50,000x magnification, the optimum condition of ion-beam etching consisted of an accelerating voltage of E = 1 keV and an ion-beam dose of It = 360 ~ 400 μA. min, depending on parts of the specimens. In order to decrease overetching, we had to choose factors such as E = 1 ~ 2 keV and It = 500 μA. min.  相似文献   

14.
In‐situ annealing experiments were performed in the scanning electron microscope on a single‐phase Al?0.13Mg alloy cold rolled to different strain levels. Once the validity of the technique had been verified by comparison of the recrystallization kinetics and final grain size with bulk annealed samples, the method was used in combination with electron back‐scattered diffraction (EBSD) to study the potential mechanisms for recrystallization in this alloy. During annealing of material rolled to moderate strains (?t < 0.7), the primary mechanism was strain‐induced boundary migration (SIBM). In material rolled to higher true strains (?t > 1.4), recrystallization occurred extensively along pre‐existing cube bands and EBSD measurements showed that the mean size of cells within the cube bands was larger than for all other orientations measured, suggesting a size advantage was responsible for the strengthening of cube texture during recrystallization. SIBM was shown to occur concurrently with the nucleation along cube bands but this contributed a lower proportion of nucleation sites during recrystallization.  相似文献   

15.
The shell of Micropilina arntzi (Mollusca: Monoplacophora), a primitive molluscan class, was examined by using field emission scanning electron microscopy (FESEM) at low voltage and atomic force microscopy (AFM). The use of these two techniques allowed the observation of fine details of Micropilina arntzi shell and contributed to bring new features concerning the study of molluscan shell microtexture. Imaging with low-voltage FESEM provided well-defined edge contours of shell structures, while analyzing the sample with AFM gave information about the step height of stacked internal structures as well as the dimension of the particles present in their surface at a nanometric level. The shell microstructure of Monoplacophora species presents different patterns and may be a taxonomic implication in the systematic studies of the group.  相似文献   

16.
We have developed a fully digital field emission scanning electron microscope (FE-SEM) with multifunctions to compensate the charging up of nonconducting surfaces. High-voltage observation, minimum electron dose, variable scanning speed, averaging, integration, tuning of surface potential, and cyclotron movements of secondary electrons have been achieved. This FE-SEM was successfully applied to observe resist, diatomaceous earth, aluminum oxide, and zeolite surfaces. The accelerating voltage is changeable in a range from 0.5 to 30 kV, and the probe current on the sample can be varied from 2×10-9 to l×10-13A to supply optimum electron dose. By using a snorkel- type, strongly excited objective lens (OL) immersing the samples in the magnetic field, the secondary electrons are extracted from the sample. For guiding electrons into the built-in lens-type secondary electron detector (SED), newly developed accelerating and retarding electrodes are installed in the OL to tune the surface potential. Furthermore, this FE-SEM can select 10 scan speeds, and the averaging and integration of secondary electron image signals are possible under every selected scan speed.  相似文献   

17.
原子力显微镜作为一种新型的表面表征手段已经得到了各个方面的应用,本文探索了AFM在DNA表面结构中的研究方法,讨论了AFM在研究DNA中优势。  相似文献   

18.
A new SEM technique for imaging uncoated non-conducting specimens at high beam voltages is described which employs a high-pressure environment and an electric field to achieve charge neutralization. During imaging, the specimen surface is kept at a stable low voltage, near earth potential, by directing a flow of positive gas ions at the specimen surface under the action of an electric bias field at a pressure of about 200 Pa. In this way charge neutrality is continuously maintained to obtain micrographs free of charging artefacts. Images are formed by specimen current detection containing both secondary electron and backscattered electron signal information. Micrographs of geological, ceramic, and semiconductor materials obtained with this method are presented. The technique is also useful for the SEM examination of histological sections of biological specimens without any further preparation. A simple theory for the charge neutralization process is described. It is based on the interaction of the primary and emissive signal components with the surrounding gas medium and the resulting neutralizing currents. Further micrographs are presented to illustrate the pressure dependence of the charge neutralization process in two glass specimens which show clearly identifiable charging artefacts in conventional microscopy.  相似文献   

19.
20.
Cartilage, being highly aqueous, is difficult to preserve for electron microscopy without artefacts. Microwave-enhanced fixation is suggested as a standard method for block samples of this material, with dimensions of up to 12 × 7 × 3 mm. Cartilage samples from the tibial plateau of adult rabbits were fixed by conventional, cryo- or microwave-enhanced fixation. Constant or cyclical microwave irradiation of samples, immersed in fixatives, was carried out to varying final solution temperatures. Microwave-enhanced fixation and staining is shown to be both rapid and reproducible, giving fine structural preservation. Below 323 K microwave fixation always gave excellent preservation of the fine structure within seconds. At higher temperatures thermal artefacts were introduced. In this study the microwave-enhanced fixation is equal in quality to the best conventional immersion fixation and is nearly as fast as cryo-preservation. It provides a standardized, reproducible fixation for morphological studies on cartilage with good process control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号