首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adamiak B  Mathieu C 《Scanning》2000,22(3):178-181
This paper presents experimental observations on electron scattering by gases (helium and air) in the specimen chamber of a variable pressure scanning electron microscope. It shows an important reduction of the beam scattering with the use of helium gas, and the consequences for the x-ray microanalysis are discussed.  相似文献   

2.
In environmental scanning electron microscopy applications in the kPa regime are of increasing interest for the investigation of wet and biological samples, because neither sample preparation nor extensive cooling are necessary. Unfortunately, the applications are limited by poor image quality. In this work the image quality at high pressures of a FEI Quanta 600 (field emission gun) and a FEI Quanta 200 (thermionic gun) is greatly improved by optimizing the pressure limiting system and the secondary electron (SE) detection system. The scattering of the primary electron beam strongly increases with pressure and thus the image quality vanishes. The key to high‐image quality at high pressures is to reduce scattering as far as possible while maintaining ideal operation conditions for the SE‐detector. The amount of scattering is reduced by reducing both the additional stagnation gas thickness (aSGT) and the environmental distance (ED). A new aperture holder is presented that significantly reduces the aSGT while maintaining the same field‐of‐view (FOV) as the original design. With this aperture holder it is also possible to make the aSGT even smaller at the expense of a smaller FOV. A new blade‐shaped SE‐detector is presented yielding better image quality than usual flat SE‐detectors. The electrode of the new SE detector is positioned on the sample table, which allows the SE‐detector to operate at ideal conditions regardless of pressure and ED.  相似文献   

3.
The mechanisms of electron beam scattering are examined to evaluate its effect on contrast and resolution in high-pressure scanning electron microscopy (SEM) techniques reported in the literature, such as moist-environment ambient-temperature SEM (MEATSEM) or environmental SEM (ESEM). The elastic and inelastic scattering cross-sections for nitrogen are calculated in the energy range 5–25 keV. The results for nitrogen are verified by measuring the ionization efficiency, and measurements are also made for water vapour. The effect of the scattered beam on the image contrast was assessed and checked experimentally for a step contrast function at 20 kV beam voltage. A considerable degree of beam scattering can be tolerated in high-pressure SEM operation without a significant degradation in resolution. The image formation and detection techniques in high-pressure SEM are considered in detail in the accompanying paper.  相似文献   

4.
Eric Doehne 《Scanning》1997,19(2):75-78
Spurious x-ray signals, which previously prevented high-resolution energy-dispersive x-ray analysis (EDS) in the environmental scanning electron microscope (ESEM), can be corrected using a simple method presented here. As the primary electron beam travels through the gas in the ESEM chamber, a significant fraction of the primary electrons is scattered during collisions with gas molecules. These scattered electrons form a broad skirt that surrounds the primary electron beam as it impacts the sample. The correction method assumes that changes in the width of the electron skirt with pressure are less important than changes in the skirt intensity; this method works as follows: The influence of the gas on the overall x-ray data is determined by acquiring EDS spectra at two pressures. Subtracting the two spectra provides us with a difference spectrum which is then used to correct the original data, using extrapolation, back to the x-ray spectrum expected under high-vacuum conditions. Low-noise data are required to resolve small spectral peaks; however, the principle should apply equally to x-ray maps and even to low-magnification images.  相似文献   

5.
In the study presented here we have tried to state the principles and calculate and visualize models of three-dimensional (3-D)-cathodoluminescence reconstruction of luminescence structures by scanning electron microscopy (SEM). The new technique does not destroy the specimen and uses the variable energy of the electron beam to penetrate to different depths in the specimen volume. The SEM in color cathodoluminescence mode (CCL-SEM) detects integrated panchromatic CL-images for different energies of the electron beam. The use of electron scattering theory in solids and theories of cathodoluminescence and color allow the production of problem-oriented software for the routine processing of primary images. Processed images represent the CCL-SEM displays of separated layers (without CL information from other layers) up to the maximum depth penetrated by the beam. The 3-D reconstruction is carried out through algorithms developed using a personal computer, software, and a set of processed two-dimensional (2-D) images. The first experimental work was accomplished using a multilayer SiC mesastructure. The final reconstructed image of SiC material demonstrates separated epitaxial layers of different SiC polytypes and Z sections (YOZ and XOZ sections). The 3-D image represents the space distribution of CL-spectral data in color CL interpretation.  相似文献   

6.
A simple method is described to determine the effective gas path length when incident electrons scatter in the gas above the specimen. This method is based on the measurement of a characteristic x-ray line emitted from a region close to the incident beam. From various experimental measurements performed on various microscopes, it is shown that the effective gas path length may increase with the chamber pressure and that it is also often dependent of the type of x-ray bullet.  相似文献   

7.
A method is presented to determine the total scattering cross section of imaging gases used in low‐vacuum scanning electron microscopy or environmental scanning electron microscopy. Experimental results are presented for water vapor, nitrogen gas and ambient air for primary beam electron energies between 5 and 30 keV. The measured results are compared and discussed with calculated values. This method allows the effective beam gas path length (BGPL) to be determined. The variations of the effective BGPL with varying chamber pressure are presented. SCANNING 31: 107–113, 2009. © 2009 Wiley Periodicals, Inc.  相似文献   

8.
Helium ion microscopy (HeIM) presents a new approach to nanotechnology and nanometrology, which has several potential advantages over the traditional scanning electron microscope (SEM) currently in use in research laboratories and manufacturing facilities across the world. Owing to the very high source brightness, and the shorter wavelength of the helium (He) ions, it is theoretically possible to focus the ion beam into a smaller probe size relative to that of the electron beam of an SEM. Hence, resolution 2 × – 4 × better than that of comparable SEMs is theoretically possible. In an SEM, an electron beam interacts with the sample and an array of signals are generated, collected and imaged. This interaction zone may be quite large depending upon the accelerating voltage and materials involved. Conversely, the helium ion beam interacts with the sample, but it does not have as large an excitation volume and, thus, the image collected is more surface sensitive and can potentially provide sharp images on a wide range of materials. Compared with an SEM, the secondary electron yield is quite high—allowing for imaging at extremely low beam currents and the relatively low mass of the helium ion, in contrast to other ion sources such as gallium, potentially results in minimal damage to the sample. This article reports on some of the preliminary work being done on the HeIM as a research and measurement tool for nanotechnology and nanometrology being done at NIST. SCANNING 30: 457–462, 2008. Published 2008 by Wiley Periodicals, Inc.  相似文献   

9.
Wight SA 《Scanning》2001,23(5):320-327
This work describes the comparison of experimental measurements of electron beam spread in the environmental scanning electron microscope with model predictions. Beam spreading is the result of primary electrons being scattered out of the focused beam by interaction with gas molecules in the low-vacuum specimen chamber. The scattered electrons form a skirt of electrons around the central probe. The intensity of the skirt depends on gas pressure in the chamber, beam-gas path length, beam energy, and gas composition. A model has been independently developed that, under a given set of conditions, predicts the radial intensity distribution of the scattered electrons. Experimental measurements of the intensity of the beam skirt were made under controlled conditions for comparison with model predictions of beam skirting. The model predicts the trends observed in the experimentally determined scattering intensities; however, there does appear to be a systematic deviation from the experimental measurements.  相似文献   

10.
The gas density of argon along the axis of a pressure-limiting aperture in an environmental scanning electron microscope is found by the direct simulation Monte Carlo method. The aperture is made on a thin material plate, producing the sharpest possible transition region between the specimen chamber and the differentially pumped region downstream of the gas flow. The entire regime from free molecule to continuum flow has been studied, which covers any size of aperture diameter and any pressure from vacuum to one atmosphere. The amount of electron beam transmitted without scattering at any point along the aperture axis is found in the range of accelerating voltage between 1 and 30 kV for argon. The electron beam transmission is further computed for helium, neon, hydrogen, oxygen, nitrogen and water vapour. This study constitutes the basis for the design and construction of an environmental scanning electron microscope having an optimum electron beam transfer, which is the primary requirement for an optimum performance instrument.  相似文献   

11.
G. C. Rosolen  W. D. King 《Scanning》1998,20(7):495-500
We have developed an automated image alignment system for the scanning electron microscope (SEM). This system enables specific locations on a sample to be located and automatically aligned with submicron accuracy. The system comprises a sample stage motorization and control unit together with dedicated imaging electronics and image processing software. The standard SEM sample stage is motorized in the X and Y axes with stepping motors which are fitted with rotary optical encoders. The imaging electronics are interfaced to beam deflection electronics of the SEM and provide the image data for the image processing software. The system initially moves the motorized sample stage to the area of interest and acquires an image. This image is compared with a reference image to determine the required adjustments to the stage position or beam deflection. This procedure is repeated until the area imaged by the SEM matches the reference image. A hierarchical image correlation technique is used to achieve submicron alignment accuracy in a few seconds. The ability to control the SEM beam deflection enables the images to be aligned with an accuracy far exceeding the positioning ability of the SEM stage. The alignment system may be used on a variety of samples without the need for registration or alignment marks since the features in the SEM image are used for alignment. This system has been used for the automatic inspection of devices on semiconductor wafers, and has also enabled the SEM to be used for direct write self-aligned electron beam lithography.  相似文献   

12.
The objective of this investigation was to evaluate the practical effects of electron beam broadening in the environmental scanning electron microscope (ESEM) on particle x-ray microanalysis and to determine some of the optimum operating conditions for this type of analysis. Four sets of experiments were conducted using a Faraday cage and particles of copper, glass, cassiterite, andrutile. The accelerating voltage and chamber pressure varied from 20 to 10 kV and from 665–66 Pa (5.0 to 0.5 torr), respectively. The standard gaseous secondary electron detectors (GSED) and the long environmental secondary dectectors (ESD) for the ESEM were evaluated at different working distances. The effect of these parameters on the presence of artifact peaks was evaluated. The particles were mounted on carbon tape on an aluminum specimen mount and were analyzed individually and as a mixture. Substrate peaks were present in almost all of the spectra. The presence of neighboring particle peaks and the number of counts in these depended upon the operating conditions. In general, few of these peaks were observed with the long ESD detector at 19 mm working distance and at low chamber pressures. More peaks and counts were observed with a deviation from these conditions. The most neighboring peaks and counts were obtained with the GSED detector at 21.5 mm working distance, 10 kV accelerating voltage, and 665 Pa (5.0 torr) chamber pressure. The results of these experiments support the idea that the optimum instrumental operating conditions for EDS analysis in the ESEM occur by minimizing the gas path length and the chamber water vapor pressure, and by maximizing the accelerating voltage. The results suggest that the analyst can expect x-ray counts from the mounting materials. These tests strongly support the recommendation of the manufacturer to use the long ESD detector and a 19 mm working distance for EDS analysis. The results of these experiments indicate that neighboring particles millimeters from the target may contribute x-ray counts to the spectrum.  相似文献   

13.
We demonstrate that the gas-amplified secondary electron signal obtained in the environmental scanning electron microscope has both desired and spurious components. In order to isolate the contributions of backscattered and secondary electrons, two sets of samples were examined. One sample consisted of a pair of materials having similar secondary emission coefficients but different backscatter coefficients, while the other sample had a pair with similar backscatter but different secondary emission coefficients. Our results show how the contribution of the two electron signals varies according to the pressure of the amplifying gas. Backscatter contributions, as well as background due to gas ionization from the primary beam, become significant at higher pressure. Furthermore, we demonstrate that the relative amplification efficiencies of various electron signals are dependent upon the chemistry of the gas.  相似文献   

14.
Newbury DE 《Scanning》2004,26(3):103-114
Rough samples with topography on a scale that is much greater than the micrometer dimensions of the electron interaction volume present an extreme challenge to quantitative electron beam x-ray microanalysis with energy-dispersive x-ray spectrometry. Conventional quantitative analysis procedures for flat, bulk specimens become subject to large systematic errors due to the action of geometric effects on electron scattering and the x-ray absorption path compared with the ideal flat sample. The best practical approach is to minimize geometric effects through specimen reorientation using a multiaxis sample stage to obtain the least compromised spectrum. When rough samples must be analyzed, corrections for geometric factors are possible by the peak-to-local background (P/B) method. Correction factors as a function of photon energy can be determined by the use of reference background spectra that are either measured locally or calculated from pure element spectra and estimated compositions. Significant improvements in accuracy can be achieved with the P/B method over conventional analysis with simple normalization.  相似文献   

15.
Raynald Gauvin 《Scanning》1999,21(6):388-393
This paper presents a new correction procedure for quantitative x-ray microanalysis in the environmental or variable pressure scanning electron microscope (SEM). This method is based on a plot of the measured intensity as a function of the fraction of nonscattered beam intensity, fp. The theory predicts that the plot should be linear and the corrected intensity is given for fp = 1. The advantage is that such a plot is valid for any measured pressures, which is not the case with the usual pressure correction methods. To use this method, a simple equation is derived to compute fp. Other variations of this correction procedure are also presented. Comparison with measurements performed by Mansfield (1999) show the great consistency of this method.  相似文献   

16.
A new SEM technique for imaging uncoated non-conducting specimens at high beam voltages is described which employs a high-pressure environment and an electric field to achieve charge neutralization. During imaging, the specimen surface is kept at a stable low voltage, near earth potential, by directing a flow of positive gas ions at the specimen surface under the action of an electric bias field at a pressure of about 200 Pa. In this way charge neutrality is continuously maintained to obtain micrographs free of charging artefacts. Images are formed by specimen current detection containing both secondary electron and backscattered electron signal information. Micrographs of geological, ceramic, and semiconductor materials obtained with this method are presented. The technique is also useful for the SEM examination of histological sections of biological specimens without any further preparation. A simple theory for the charge neutralization process is described. It is based on the interaction of the primary and emissive signal components with the surrounding gas medium and the resulting neutralizing currents. Further micrographs are presented to illustrate the pressure dependence of the charge neutralization process in two glass specimens which show clearly identifiable charging artefacts in conventional microscopy.  相似文献   

17.
Wight SA  Zeissler CJ 《Scanning》2000,22(3):167-172
Phosphor imaging plate technology has made it possible to directly image the distribution of primary beam electrons and scattered electrons in the environmental scanning electron microscope. The phosphor plate is exposed under electron scattering conditions in the microscope chamber. When processed, the electron intensity distribution is displayed as a digital image. The image is a visual representation of the electron probe and skirt and may provide the basis for a more accurate model.  相似文献   

18.
A longstanding limitation of imaging with serial block‐face scanning electron microscopy is specimen surface charging. This charging is largely due to the difficulties in making biological specimens and the resins in which they are embedded sufficiently conductive. Local accumulation of charge on the specimen surface can result in poor image quality and distortions. Even minor charging can lead to misalignments between sequential images of the block‐face due to image jitter. Typically, variable‐pressure SEM is used to reduce specimen charging, but this results in a significant reduction to spatial resolution, signal‐to‐noise ratio and overall image quality. Here we show the development and application of a simple system that effectively mitigates specimen charging by using focal gas injection of nitrogen over the sample block‐face during imaging. A standard gas injection valve is paired with a precisely positioned but retractable application nozzle, which is mechanically coupled to the reciprocating action of the serial block‐face ultramicrotome. This system enables the application of nitrogen gas precisely over the block‐face during imaging while allowing the specimen chamber to be maintained under high vacuum to maximise achievable SEM image resolution. The action of the ultramicrotome drives the nozzle retraction, automatically moving it away from the specimen area during the cutting cycle of the knife. The device described was added to a Gatan 3View system with minimal modifications, allowing high‐resolution block‐face imaging of even the most charge prone of epoxy‐embedded biological samples.  相似文献   

19.
Oho E  Suzuki K  Yamazaki S 《Scanning》2007,29(5):225-229
The quality of the image signal obtained from the environmental secondary electron detector (ESED) employed in a variable pressure (VP) SEM can be dramatically improved by using helium gas. The signal-to-noise ratio (SNR) increases gradually in the range of the pressures that can be used in our modified SEM. This method is especially useful in low-voltage VP SEM as well as in a variety of SEM operating conditions, because helium gas can more or less maintain the amount of unscattered primary electrons. In order to measure the SNR precisely, a digital scan generator system for obtaining two images with identical views is employed as a precondition.  相似文献   

20.
We analyse the signal formation process for scanning electron microscopic imaging applications on crystalline specimens. In accordance with previous investigations, we find nontrivial effects of incident beam diffraction on the backscattered electron distribution in energy and momentum. Specifically, incident beam diffraction causes angular changes of the backscattered electron distribution which we identify as the dominant mechanism underlying pseudocolour orientation imaging using multiple, angle‐resolving detectors. Consequently, diffraction effects of the incident beam and their impact on the subsequent coherent and incoherent electron transport need to be taken into account for an in‐depth theoretical modelling of the energy‐ and momentum distribution of electrons backscattered from crystalline sample regions. Our findings have implications for the level of theoretical detail that can be necessary for the interpretation of complex imaging modalities such as electron channelling contrast imaging (ECCI) of defects in crystals. If the solid angle of detection is limited to specific regions of the backscattered electron momentum distribution, the image contrast that is observed in ECCI and similar applications can be strongly affected by incident beam diffraction and topographic effects from the sample surface. As an application, we demonstrate characteristic changes in the resulting images if different properties of the backscattered electron distribution are used for the analysis of a GaN thin film sample containing dislocations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号