首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of nonionic surfactant chain length on the properties of tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)3(2+) where bpy = 2,2'-bipyridine) electrochemiluminescence (ECL) have been investigated. The electrochemistry, photophysics, and ECL of Ru(bpy)3(2+) in the presence of a series of nonionic surfactants are reported (Triton X-100, 114, 165, 405, 305, and 705-70). These surfactants differ in the number of poly(ethylene oxide) units incorporated into the surfactant molecule. The anodic oxidation of Ru(bpy)3(2+) produces ECL in the presence of tri-n-propylamine (TPrA) in aqueous surfactant solution. Increases in ECL efficiency (> or = 5-fold) and TPrA oxidation current (> or = 2-fold) have been observed in surfactant media. Slight decreases in ECL intensity are observed as the chain length of the nonionic surfactant increases. The data supports adsorption of surfactant on the electrode surface, thus facilitating TPrA and Ru(bpy)3(2+) oxidation and leading to higher ECL efficiencies.  相似文献   

2.
The electrochemiluminescence (ECL) of Ir(ppy)3 (ppy = 2-phenylpyridine) is reported in acetonitrile (CH3CN), mixed CH3CN/H20 (50:50 v/v), and aqueous (0.1 M KH2PO4) solutions with tri-n-propylamine as an oxidative-reductive coreactant. ECL efficiencies (phi(ecl), photons emitted per redox event) of 0.00092 in aqueous, 0.0044 in mixed, and 0.33 in CH3CN solutions for Ir(ppy)3 were obtained using Ru(bpy)3(2+) (bpy = 2,2'-bipyridine) as a relative standard (phi(ecl) = 1). Photoluminescence (PL) efficiencies of 0.039, 0.050, and 0.069 were obtained in aqueous, mixed, and acetonitrile solutions, respectively, compared to Ru(bpy)3(2+) (phi(em) = 0.042). The ECL spectra were identical to photoluminescence spectra (lambda(max) approximately equal to 517 nm), indicating formation of the same metal-to-ligand (MLCT) excited states in both ECL and PL. The ECL is linear over several orders of magnitude in mixed and acetonitrile solution with theoretical detection limits (blank plus three times the standard deviation of the noise) of 1.23 nM in CH3CN and 0.23 microM in CH3CN/ H20 (50:50 v/v).  相似文献   

3.
The electrochemical and electrochemiluminescence (ECL) properties of Cu[dmp]2+ (dmp = 2,9-dimethyl-1,10-phenanthroline) have been investigated. ECL has been observed for Cu(dmp)2+ in aqueous, nonaqueous, and mixed solvent solutions using tri-n-propylamine as an oxidative-reductive coreactant. The ECL intensity peaks at potential corresponding to oxidation of both the coreactant and Cu(dmp)2+. The peak potential corresponding to maximum ECL emission is approximately 500 mV more anodic than corresponding oxidative peak potentials, indicating that the ECL emission may be due to the formation of either the *Cu(dmp)2+ metal-to-ligand charge-transfer excited state or an excited-state product of Cu(dmp)2+ oxidation. ECL efficiencies (phiecl = photons generated per redox event) are solvent-dependent (phiecl (CH3CN) > phiecl (50:50 (v/v) CH3CN:H20) > phiecl (H2O)) and correspond fairly well with photoluminescence efficiencies. Increased ECL efficiencies (> or = 50-fold) are observed in the presence of the nonionic surfactant Triton X-100.  相似文献   

4.
Zu Y  Bard AJ 《Analytical chemistry》2001,73(16):3960-3964
We describe the effect of electrode surface hydrophobicity on the electrochemical behavior and electrogenerated chemiluminescence (ECL) of Ru(bpy)3(2+) (bpy = 2,2'-bipyridyl)/tripropylamine (TPrA) system. Gold and platinum electrodes were modified with different thiol monolayers. The hydrophobicity of the electrode surfaces changed with different terminal groups of the thiol molecules. The oxidation rate of TPrA was found to be much larger at the modified electrode with a more hydrophobic surface. The adsorption of neutral TPrA species on this kind of surface was assumed to contribute to the faster anodic kinetics. Due to the rapid generation of the highly reducing radical, TPrA., ECL intensity increased significantly at more hydrophobic electrodes. This electrode surface effect in the ECL analytical system allows one to improve the detection sensitivity at low concentrations of Ru(bpy)3(2+). The surfactant effect on the ECL process was also examined and discussed based on the change of electrode hydrophobicity by the adsorption of surfactant species.  相似文献   

5.
The effects of metal ions on the electrochemiluminescence (ECL) properties of (bpy)2Ru(AZA-bpy) (bpy = 2,2'-bipyridine; AZA-bpy = 4-(N-aza-18-crown-6-methyl-2,2'-bipyridine) have been investigated. The electrochemistry, photophysics and ECL of Ru(bpy)3(2+) in the presence of Pb2+, Hg2+, Cu2+, and K+ are reported. The anodic oxidation of Ru(bpy)3(2+) produces ECL in the presence of tri-n-propylamine (TPrA) in 50:50 (v/v) CH3CN:H2O solution. Increases in ECL efficiency (photons generated per redox event) up to 20-fold that depend on both the concentration and nature of the metal ion have been observed, making this an interesting system for electrochemiluminescence metal ion sensing.  相似文献   

6.
The electrochemistry and electrogenerated chemiluminescence (ECL) of Ru(bpy)3(2+) (bpy = 2,2'-bipyridyl) were studied in the presence of the nonionic surfactants Triton X-100, Thesit, and Nonidet P40. The anodic oxidation of Ru(bpy)3(2+) produces ECL in the presence of tri-n-propylamine in both aqueous and surfactant solutions. Increases in both ECL efficiency (> or =8-fold) and duration of the ECL signal were observed in surfactant media. A shift to lower energies of the Ru(bpy)3(2+) ECL emission by approximately 8 nm was also observed. The one-electron oxidation of Ru(bpy)3(2+) to Ru(bpy)3(3t) occurs at + 1.03 V vs Ag/AgCl in aqueous buffered (0.2 M potassium phosphate) solution as found by square wave voltammetry. This potential did not shift in surfactant systems, indicating that the redshifts in ECL emission are due to stabilization of ligand pi* orbitals in the metal-to-ligand charge-transfer excited state. These results are consistent with hydrophobic interactions between Ru(bpy)3(2+) and the nonionic surfactants.  相似文献   

7.
Zu Y  Bard AJ 《Analytical chemistry》2000,72(14):3223-3232
We describe the electrogenerated chemiluminescence (ECL) processes of the Ru(bpy)3(2+) (bpy = 2,2'-bipyridyl)/ tripropylamine (TPrA) system at glassy carbon, platinum, and gold electrodes. The electrochemical behavior of TPrA on different electrode materials and its influence on the ECL process are demonstrated. At glassy carbon electrodes, the direct oxidation of TPrA began at approximately 0.6 V vs SCE and exhibited a broad irreversible anodic peak. Two ECL waves were observed, one in the potential region more negative than 1.0 V vs SCE and one at more positive potentials. The first ECL process apparently occurs without the electrogeneration of Ru(bpy)3(3+), in contrast to that of the second ECL wave. At Pt and Au electrodes, however, the formation of surface oxides significantly blocked the direct oxidation of TPrA. An ECL wave below 1.0 V did not appear at Pt and was very weak at gold. The ECL peaks at potentials of 1.1-1.2 V were also much weaker than those observed at the glassy carbon electrode. These results showed that the direct oxidation of TPrA played an important role in the ECL processes. Therefore, the enhancement of the TPrA oxidation current might lead to an increase in the ECL intensity. Small amounts of halide species were found to inhibit the growth of surface oxides on Pt and gold electrodes and led to an obvious increase of TPrA oxidation current. The anodic dissolution of gold in halide-containing solution was also important in activating the gold electrode surface. The electrochemical catalytic effect of bromide further promoted the oxidation of TPrA. A halide effect on ECL at Pt and Au electrodes was also evident. The most effective enhancement of ECL was observed at Au electrode in a bromide-containing solution. This effect was also found in an commercial flow-through instrument (IGEN) and provided a simple way to improve the detection sensitivity at low concentrations of Ru(bpy)3(2+).  相似文献   

8.
Ji Hyun Seo 《Thin solid films》2009,517(5):1807-1861
The blue-green organic light-emitting diodes based on heteroleptic tris-cyclometalated iridium(III) complexes containing the F2-ppy (2,4-difluorophenylpyridine) and ppy (2-phenylpyridine) ligands were fabricated. Ir(ppy)3 has been known to have a high phosphorescence efficiency in electroluminescence owing to its strong metal-to-ligand-charge transfer (MLCT) excited state, whereas the luminous efficiency of Ir(F2-ppy)3 was found to be low due to weak MLCT. Herein, we report two heteroleptic phosphorescent blue-green emitters, Ir(ppy)2(F2-ppy) and Ir(ppy)(F2-ppy)2, that exhibit emission peaks at 502 nm and 495 nm, respectively. The maximum luminous efficiencies of the devices with Ir(ppy)2(F2-ppy) and Ir(ppy)(F2-ppy)2 were 8.93 cd/A and 13.80 cd/A, respectively. The quantum efficiency of the device containing Ir(ppy)(F2-ppy)2 was 3.63% at J = 10 mA/cm2.  相似文献   

9.
Yong Hwan Park 《Thin solid films》2007,515(12):5084-5089
The synthesis and photophysical study of efficient phosphorescent heteroleptic tris-cyclometalated iridium(III) complexes having two different (C^N) ligands are reported. In order to improve the luminescence efficiency by avoiding triplet-triplet (T-T) annihilation, new heteroleptic tris-cyclometalated iridium complexes, Ir(ppy)2(dpq), Ir(ppy)2(dpq-3-F) and Ir(ppy)2(dpq-CF3), are designed and prepared where ppy, dpq, dpq-3-F and dpq-CF3 represent 2-phenylpyridine, 2,4-diphenylquinoline, 2-(3-fluorophenyl)-4-phenylquinoline, and 4-phenyl-2-(4-(trifluoromethyl)phenyl)quinoline, respectively. Ppy ligands and dpq derivatives can act as a source of energy supply. When new heteroleptic tris-cyclometalated iridium complex, Ir(ppy)2(dpq-3-F) is placed in the lowest excited state, the excitation energy is neither quenched nor deactivated but quickly intermolecularly transferred from two ppy ligands to one luminescent dpq-3-F ligand. Such transfer can occur because the triplet energy level of Ir(ppy)3 is higher than that of Ir(dpq-3-F)3 and because Ir(dpq-3-F)3 was known to have a shorter lifetime than that of Ir(ppy)3. As a result, Ir(ppy)2(dpq-3-F) shows strong emission band at 620 nm from dpq-3-F ligand in the end. Thus it allows more reddish luminescent color and improves the luminescence by the decrease of quenching or energy deactivation by decreasing the number of the luminescent ligand. To analyze luminescent mechanism, we calculated these complexes theoretically by using computational method.  相似文献   

10.
The electrochemiluminescence (ECL) of tris(8-hydroxyquinoline-5-sulfonic acid)aluminum(III) in aqueous solution is reported. ECL is generated by complexing aluminum ions with the chelating agent 8-hydroxyquinoline-5-sulfonic acid (HQS) to form Al(HQS)3, followed by oxidation in the presence of tri-n-propylamine (TPrA). The ECL intensity peaks a potential corresponding to oxidation of both TPrA and Al(HQS)3, and the ECL emission spectrum (lambda(max) = 499 nm) matches the photoluminescence emission spectrum, indicating that the emission is from a Al(HQS)3* excited state. ECL efficiencies (phi(ecl), photons generated per redox event) of 0.002 using Ru(bpy)3(2+) (phi(ecl) = 1) as relative standard. Conditions for ECL emission were optimized and used to generate a calibration curve that was linear over the 7 x 10(-6)-4 x 10(-4) M (5-281 mg/L (ppm)) range with a theoretical limit of detection of 1 ppm. The ECL of several metal ions other than aluminum with HQS and effects on Al(HQS)3 ECL were also examined.  相似文献   

11.
Li F  Zu Y 《Analytical chemistry》2004,76(6):1768-1772
Fluorosurfactants are commercially available, and their applications in electrochemical systems have been the interest of many studies. Here, we describe a novel effect of a nonionic fluorosurfactant (Zonyl FSN) on the electrogenerated chemiluminescence (ECL) of the tris(2,2'-bipyridine)ruthenium(II)/tri-n-propylamine (TPrA) system at gold and platinum electrodes. Compared with its hydrocarbon analogue (Triton X-100), the adsorbed fluorosurfactant species not only rendered the electrode surfaces more hydrophobic but also significantly retarded the growth of the electrode oxide layers. As a result, more facile direct oxidation of TPrA was achieved, which led to the appearance of a low oxidation potential ECL signal (below 1.0 V vs SCE). At the gold electrode, the ECL peak appeared at 0.82 V, approximately 400 mV more negative than usual; while its intensity was approximately 50 times higher. The generation of the intense ECL signal at low oxidation potential may lead to the development of more efficient ECL analysis.  相似文献   

12.
Organic light-emitting device (OLED) was fabricated using the novel red phosphorescent heteroleptic tris-cyclometalated iridium complex, bis(2-phenylpyridine)iridium(III)[2(5′-methylphenyl)-4-diphenylquinoline] [Ir(ppy)2(dpq-5CH3)], based on 2-phenylpyridine (ppy) and 2(5′-methylphenyl)-4-diphenylquinoline (dpq-5CH3) ligand. Generally, the ppy ligand in heteroleptic iridium complexes plays an important role as “sensitizer” in the efficient energy transfer from the host (CBP; 4,4,N,N′-dicarbazolebiphenyl) to the luminescent ligand (dpq-5CH3). We demonstrated that high efficiency through the “sensitizer” can be obtained, when the T1 of the emitting ligand is close to T1 of the sensitizing ligand. The device containing Ir(ppy)2(dpq-5CH3) produced red light emission of 614 nm with maximum luminescence efficiency and power efficiency of 8.29 cd/A (at 0.09 mA/cm2) and 5.79 lm/W (at 0.09 mA/cm2), respectively.  相似文献   

13.
The new iridium complexes, Ir(C^N)2(bq), (C^N = ppy, F2-ppy, 2,3-dpqx-F2 or 4-Me-2,3-dpq) were prepared and their luminescence properties were investigated, where ppy, F2-ppy, 2,3-dpqx-F2, 4-Me-2,3-dpq and bq represent 2-phenylpyridine, 2-(4',6'-difluorophenyl)-pyridine, 2,3-bis (4'-fluorophenyl)quinoxaline, 4-methyl-2,3-diphenylquinoline and 10-hydroxybenzoquinoline ligands, respectively. We expected that the relative energy levels of the main ligands (C^N) and ancillary ligand, bq, in the complexes could determine the possibility of interligand energy transfer (ILET) in the complexes and thereby luminescence properties. The main ligands, F2-ppy and 2,3-dpqx-F2, which have drastically different energy gaps between the HOMO and LUMO energy levels were chosen and their complexes were synthesized. The photoabsorption, photoluminescence and electroluminescence of the complexes were studied. Ir(ppy)2(bq), Ir(F2-ppy)2(bq) Ir(2,3-dpqx-F2)2(bq) and Ir(4-Me-2,3-dpq)2(bq) exhibited the luminescence maxima between 600-694 nm and their efficiencies were affected by the main ligands. While Ir(ppy)2(bq) and Ir(F2-ppy)2(bq) showed relatively high luminous efficiencies (> 10 cd/A), Ir(2,3-dpqx-F2)(bq) had poor luminous efficiency (0.30 cd/A). The electrochemical properties were studied to support ILET in the ppy-based iridium complexes. Their luminescence performances were compared with those of the complexes containing acetylacetonate (acac) ancillary ligand which are not allowed to have ILET.  相似文献   

14.
J.G. Jang  H.K. Shin 《Thin solid films》2009,517(14):4122-2300
A new high efficiency green light emitting phosphorescent device with an emission layer consisting of {4,4',4'-tris(N-carbazolyl)-triphenylamine[TCTA]/TCTA0.5TPBi0.5/1,3,5-tris(N-phenylbenzimiazole-2-yl)benzene[TPBi]}:tris(2-phenylpyridine)iridium(III)[Ir(ppy)3] was fabricated and its electroluminescence characteristics were evaluated in comparison with those of devices with emission layers made of (TCTA0.5TPBi0.5):Ir(ppy)3 and (TCTA/ TPBi):Ir(ppy)3.The device with the emission layer consisting of (TCTA/TCTA0.5TPBi0.5/TPBi):Ir(ppy)3 showed a luminance of 11,000 cd/m2 at an applied voltage of 8 V and maximum current efficiency of 63 cd/A under a luminance of 500 cd/m2. The peak wavelength in the electroluminescent spectral and color coordinate on the Commission Internationale de I'Eclairage(CIE) chart were 513 nm and (0.31, 0.62) in this device, respectively. Under a luminance of 10000 cd/m2, the current efficiency of this device was 55 cd/A, which is 1.4 and 1.1 times better than those of the devices with the emission layers made of (TCTA0.5TPBi0.5):Ir(ppy)3 and (TCTA/TPBi):Ir(ppy)3, respectively.  相似文献   

15.
The charge carrier mobility of green phosphorescent emissive layers, tris(2-phenylpyridine) iridium [Ir(ppy)3]-doped 4,4'-N,N'-dicarbazole-biphenyl (CBP) thin films, has been determined using impedance spectroscopy (IS) measurements. The theoretical basis of mobility measurement by IS rests on a theory for single-injection space-charge limited current. The hole mobilities of the Ir(ppy)3-doped CBP thin films were measured to be 10− 10–10− 8 cm2V− 1 s− 1 in the 2–7 wt.% Ir(ppy)3-doped CBP from the frequency dependence of both conductance and capacitance. These hole mobility values are much lower than those of the undoped CBP thin films (~ 10− 3 cm2V− 1 s− 1) because the Ir(ppy)3 molecules act as trapping centers in the CBP host matrix. These mobility measurements in the Ir(ppy)3-doped CBP thin films provide insight into the hole injection process.  相似文献   

16.
A calculation has been done to explain the temperature dependence of photoluminescence (PL) lifetime of fac tris(2-phenylpyridine) iridium (Ir(ppy)3) observed in polycarbonate (PC) at 8–295 K. Taking into account (1) three zero-field splitting substates in the lowest-energy triplet state and (2) one-phonon non-radiative transitions among these substates, the rate equations have been obtained for the populations of these substates. We derived the PL time response with three PL lifetimes, which increase with decreasing temperature from 300 K to 1 K. A good agreement has been obtained between the calculated PL lifetimes and the observed ones.  相似文献   

17.
The luminescence and second order non linear optical (NLO) response of [Ir(ttpy)2(5-R-1,10-phen)][PF6] (ttpy = cyclometallated 3′-(2-pyridil)-2,2′:5′,2″-terthiophene, phen = phenanthroline; R = Me, NO2) and [Ir(pq)2(5-R-1,10-phen)][PF6] (pq = cyclometallated 2-phenylquinoline) have been investigated experimentally in CH2Cl2 solution and compared with that of [Ir(ppy)2(5-R-1,10-phen)][PF6] (ppy = cyclometallated 2-phenylpyridine), characterized by one of the highest second order NLO response ever reported for a metal complex. Substitution of ppy with the more π-delocalized pq does not affect significantly the luminescence and NLO properties. A slightly lower NLO response and a much poorer luminescence is observed for the related complexes with ttpy. In these complexes, DFT/TDDFT calculations show that the presence of ttpy induces a significant downshift of the HOMO energy, compared to ppy and pq. The NLO response is dominated by intense MLCT excited states, which are also assigned as originating the emission.  相似文献   

18.
The new heteroleptic iridium complexes bearing 2-(5-phenyl-1,3,4-oxadiazol-2-yl)phenolate (ODZ), were synthesized and characterized for application to organic light-emitting diodes (OLEDs). As main ligands (C^N), the anions of 2-phenylpyridine (ppy), 2-phenylquinoline (pq) and 2-(2,4-difluorophenyl)pyridine (F2-ppy) were chelated to the iridium center and 2-(5-phenyl-1,3,4-oxadiazol-2-yl)phenolate (ODZ) was introduced as an ancillary ligand for luminescence modulation of their iridium complexes. We expected that the relative energy levels of the main and ancillary ligands in the complexes could lead to emission color tuning and luminous efficiency improvement by possible inter-ligand energy transfer (ILET). The photoabsorption, photoluminescence and electroluminescence of the complexes were studied. Ir(F2-ppy)2(ODZ), Ir(ppy)2(ODZ) and Ir(pq)2(ODZ) exhibited the photoluminescence maxima between 505-610 nm at room temperature in CH2Cl2, depending on both main and ancillary ligands. The longer pi conjugation in the cyclometallating pq ligands leads to the bathochromic shift in luminescence of their iridium complexes. The electroluminescent properties of the complexes were influenced by ILET.  相似文献   

19.
《Optical Materials》2014,36(12):2440-2443
Organic light emitting diodes using phosphorescent dyes (PHOLEDs) have excellent performance and an internal quantum efficiency approaching 100%. To maximize performance, PHOLED devices use a conductive organic host material with a phosphorescent guest that is sufficiently dispersed to avoid concentration quenching. One of the most widely used organic compounds, green phosphorescent fac-tris(2-phenylpyridine)iridium, or [Ir(ppy)3], can be used to produce PHOLEDs with very high external quantum efficiency by doping host material at different nominal concentrations. In this study, a methodology to accurately establish dopant concentration in co-deposited organic layers is proposed and discussed. X-ray fluorescence (XRF) and Rutherford backscattering (RBS) analyses were performed in co-deposited organic thin films and then combined to provide an accurate methodology. [Ir(ppy)3] was used at different concentrations in two different hosts – 2,7-bis(9-carbazolyl)-9,9-spirobifluorene (Spiro2-CBP) and copper phthalocyanine (CuPc) – to test the proposed methodology. As Cu peak is easily detected by RBS, the CuPc host was chosen for calibration purposes, allowing more accurate determination of [Ir(ppy)3] concentration. A linear correlation between the RBS and the XRF measurement data was found allowing the drawing up of a calibration chart used to determine the [Ir(ppy)3] mass content in co-deposited films.  相似文献   

20.
The electrochemiluminescence (ECL) of Os(phen)2(dppene)2+ (phen = 1,10-phenanthroline and dppene = bis(diphenylphosphino)ethene) is reported in mixed CH3CN/H2O (50:50 v/v) and aqueous (0.1 M KH2PO4) solutions with tri-n-propylamine (TPrA) as an oxidative-reductive coreactant. ECL efficiencies (phi(ecl) = photons emitted/redox event) of 2.0 in aqueous, and 0.95 in mixed for Os(phen)2(dppene)2+ were obtained using Ru(bpy)3(2+) (bpy = 2,2'-bipyridine) as a relative standard (phi(ecl) = 1). Photoluminescence (PL) efficiencies of 0.094 and 0.053 were obtained in aqueous and mixed solutions, respectively, as compared to Ru(bpy)3(2+) (phi(em) = 0.042). The ECL spectra were identical to photoluminescence spectra (lambda(max) approximately 584 nm), indicating formation of the same metal-to-ligand (MLCT) excited states in both ECL and PL. The ECL is linear over several orders of magnitude in aqueous and mixed solution, with theoretical detection limits (blank plus three times the standard deviation of the noise) of 16.9 nM in H2O and 0.29 nM in CH3CN/H2O (50:50 v/v).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号