首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three-Dimensional diamond structure electromagnetic band-gap (EBG) structures containing high-K dielectric ceramic Bi(Nb0.992 V0.008)O4 (BVN) fabricated by rapid-prototyping (RP) technique were investigated. The simulations based on finite element method (FEM) were employed to model the band diagram. The influences of structure dimensions, aspect ratio and permittivity contrast on the band gap width were studied. The optimal band gap width EBGs were fabricated and investigated experimentally. EBG structures composed of epoxy resin diamond lattice and inverse-diamond lattice made of high-K BVN ceramic with silica gel were fabricated by RP method. The transmission characteristics of the EBG structures were measured by transmission/reflection (T/R) methods with a vector network analyzer. Obvious wide band-gaps of two EBGs with different lattice parameters were observed in the curve of transmission characteristics, which agreed well with the simulation results.  相似文献   

2.
A 0.22λ×0.29λ×0.03λ miniaturized modified circular patch monopole antenna on high permittivity ceramic-Polytetrafluoroethylene (PTFE) composite material substrate is presented. The proposed antenna is designed and investigated using 3D full wave high frequency electromagnetic simulator and fabricated using printed circuit board (PCB) prototyping machine. Impedance bandwidths (Reflection coefficient <?10 dB) of 26.76 % (5.0–6.3 GHz), 5.3 % (9.1–9.6 GHz) and 3.6 % (10.7–11 GHz) have measured. Average gains of 0.9 dBi, 3.68 dBi and 3.63 dBi measured at first, second and third band correspondingly. 87.3 %, 88.5 % and 93.1 % radiation efficiencies have achieved at three resonant frequencies 5.6 GHz, 9.5 GHz and 10.9 GHz respectively. The measured symmetric and nearly consistent radiation pattern makes the proposed antenna suitable for C band and X band applications. In this letter, the effects of dielectric properties of substrate material and design parameters have studied.  相似文献   

3.
In this paper, the structural and dielectric properties of SrBi2Nb2O9 (SBN) as a function of Bi2O3 or La2O3 addition level in the radio (RF) and microwave frequencies were investigated. The SBN, were prepared by using a new procedure in the solid-state reaction method with the addition of 3; 5; 10 and 15 wt.% of Bi2O3 or La2O3. A single orthorhombic phase was formed after calcination at 900 °C for 2 h. The analysis by x-ray diffraction (XRD) using the Rietveld refinement confirmed the formation of single-phase compound with a crystal structure (a?=?5.5129 Å, b?=?5.5183 Å and c?=?25.0819 Å; α?=?β?=?γ?=?90°). Scanning Electron Microscope (SEM) micrograph of the material shows globular morphologies (nearly spherical) of grains throughout the surface of the samples. The Curie temperature found for the undoped sample was about 400 °C, with additions of Bi3+, the temperature decreases and with additions of La3+ the Curie temperature increased significantly above 450 °C. In the measurements of the dielectric properties of SBN at room temperature, one observe that at 10 MHz the highest values of permittivity was observed for SBN5LaP (5%La2O3) with values of 116,71 and the lower loss (0.0057) was obtained for SBN15LaP (15%La2O3). In the microwave frequency region, Bi2O3 added samples have shown higher dielectric permittivity than La2O3 added samples, we highlight the SBN15BiG (15 % Bi2O3) with the highest dielectric permittivity of 70.32 (3.4 GHz). The dielectric permittivity values are in the range of 28–71 and dielectric losses are of the order of 10?2. The samples were investigated for possible applications in RF and microwave components.  相似文献   

4.
The dielectric properties of epoxy composites with various contents of ZnNb2O6 filler were investigated at microwave frequencies. Increasing frequency from 1 GHz to 9 GHz did not affect the composites’ dielectric constants but increased their dielectric losses; both of which depended on ZnNb2O6 content and showed typical values of 9.63 and 0.019, respectively, at 9 GHz in the composite with 0.6 volume fraction ZnNb2O6. The results were compared with theoretical models and shown to be well described by the EMT model.  相似文献   

5.
Multifunctional dielectric composites with electromagnetic and flexible properties for RF applications were investigated. A kind of low loss flexible dielectric and magnetic composite with SrTiO3 (STO) ultrafine particles and NiZn ferrite (NZO) ultrafine particles embedded in a Thermoplastic Polyolefin Elastomer (POE) matrix was fabricated using the extrusion technology. The dielectric and magnetic properties of the as-prepared composites with different volume fraction of ceramic fillers were studied. The results indicate that when the volume of the ceramic fillers is fixed, the permittivity of the composites increase while the dielectric loss, permeability and magnetic loss decrease with the increasing of the ratio of STO to NZO. The cut-off frequencies of the composites are all above 1 GHz. The good frequency stability of the electromagnetic properties within a wide frequency range was observed. All the composites show very good flexibilities. With the increasing of the volume fraction of ceramic fillers, the tensile strength and elongation decrease. The obtained multifunctional flexible magnetic-dielectric composites are good candidates for the applications of the capacitor-inductor integrating devices in RF communications such as electromagnetic interference filters and antennas.  相似文献   

6.
Yttrium Vanadate (YVO4) is a birefringent crystal, which has similar dielectric constant as that of Sapphire. In this paper we have reported the measurement of the real part of permittivity and loss tangent of YVO4 crystal in the temperature range 15–295 K at a frequency of 16.3 GHz. We have used the dielectric post resonator technique for the microwave characterisation of the YVO4 dielectric rod. The multifrequency Transmission Mode Q-Factor (TMQF) technique has been used for data processing and hence precise values of permittivity and loss tangent are achieved. Easily machineable YVO4 is characterized by low losses at microwave frequencies. At temperature of 15 K and frequency of 16.3 GHz the permittivity was 9.23 and loss tangent was 2 × 10− 5. YVO4 is identified as a potential candidate to replace expensive Sapphire in many microwave applications.  相似文献   

7.
Abstract

In this study, we report two-dimensional WS2 nanosheets successfully synthesized by simple hydrothermal method. The obtained WS2 nanosheets are very promising as electromagnetic wave absorbers. The phase composition, microstructure, electromagnetic properties and microwave absorption properties of the prepared WS2 nanosheets were characterized by XRD, SEM, TEM, XPS and vector network analyzers. Our results show that the real and imaginary parts of permittivity of WS2 prepared at 210?°C are higher than those of other samples, with maximum interfacial polarization and dielectric loss, a wide effective absorption band with a thinner thickness is obtained in the frequency range of 5.5–18?GHz. The effective absorption bandwidth can reach 12.5?GHz, the highest reflection loss of the sample wax containing 40% WS2 is –15.6?dB at a thickness of 5.5?mm, and the absolute value of RL is greater than 10?dB in the range of 2.0–5.5?mm. The results show that the prepared WS2 nanosheets have the advantages of wide bandwidth, strong absorption and light weight, and have potential application prospects in the application and development of microwave absorbing materials in the future.  相似文献   

8.
Polycrystalline Ni-Zn ferrites with a well-defined composition of Ni0.4Zn0.6Fe2-xSbxO4 synthesized using sol–gel method. Morphological characterizations on the prepared samples were performed by high resolution transmission electron and field emission scanning electron microscopy. The powders were densified using microwave sintering method. The room temperature complex permittivity (ε′ and ε″) and permeability (μ′ and μ″) were measured over a wide frequency range from 1 MHz–1.8 GHz. The real part of permittivity varies as ‘x’ concentration increases and the resonance frequency was observed at much higher frequencies and there is a significant decrease in the loss factor (tanδ). The electrical resistivity and permeability of NiZn ferrites increased with an increase of Sb content. As the concentration of ‘x’ increases from 0 to 0.08 the saturation magnetisation decreases. The saturation magnetization (Ms)?≈?52.211 A.m2/Kg for x?=?0 at room temperature. The room temperature electro paramagnetic resonance (EPR) were studied.  相似文献   

9.
Crystallizable zinc borate glasses modified with different contents of La2O3 or Nd2O3 were investigated as a potential low loss dielectric with respect to their crystallization behavior and microwave dielectric characteristics. The glasses were admixed with Al2O3 filler and fired at 850°C for 30 min in air to prepare low temperature dielectrics. Crystallization behavior and microwave dielectric properties of the resulting samples strongly depended on the relative content of La2O3 or Nd2O3 in the glass. As a promising result, the composition of 0.15ZnO-0.25Nd2O3-0.6B2O3 exhibited k?~?6.5 and Q?~?1194 at the resonant frequency of 18.9 GHz. Near zero temperature coefficient of frequency (TCF) was obtained by additional modification of the composition with ~10 wt.% of TiO2 filler. Crystallization kinetics of the samples was studied based on the differential thermal analysis (DTA) curves obtained with different heating rates. Correlation of the observed dielectric properties to the crystallization behavior is the main subject of this work.  相似文献   

10.
Ba0.5Sr0.5TiO3-BaMg6Ti6O19 microwave composite ceramics with low dielectric constant and relatively high tunability were fabricated via the solid-state reaction method. The microstructures and microwave dielectric properties of the composite ceramics have been investigated. BaMg6Ti6O19 and Ba0.5Sr0.5TiO3 can be friendly coexistent in the composite material system without obvious chemical reactions. With increasing content of BaMg6Ti6O19 from 10 wt.% to 60 wt.%, the dielectric anomalous peaks of ferroelectric-paraelectric phase transition for the composite ceramics are suppressed and broadened. The dielectric constant can be effectively tailored from 2035 to 129. For composite ceramics with 60 wt.% content of BaMg6Ti6O19, the dielectric loss still keeps around 0.002 and the tunability is 13.4% measured at a dc-applied electric field of 30 kV/cm. The Q value of composite ceramics with 20 wt.% content BaMg6Ti6O19 is 367 and the dielectric constant is cut down to 665 at the microwave band of 1.579 GHz.  相似文献   

11.
A conventional BaO–Nd2O3–TiO2 ceramic of microwave dielectric material was added to rare-earth derived borate glasses (La2O3–B2O3–TiO2) for use as LTCC (low temperature co-fired ceramic) materials. The sintering behavior, phase evaluation, and microwave dielectric properties were investigated. It was found that increasing the sintering temperature from 750 to 850 °C led to increases in shrinkage and microwave dielectric properties (≈15 for ?r , >10,000 GHz for Q*f0 and >94 ppm/ °C for τ f at 7–8 GHz for resonant frequency). The results suggest that a composite with suitable additives for τ f could feasibly be developed as a material for LTCC applications.  相似文献   

12.
Dielectric ceramics of Mg2TiO4 (MTO) were prepared by solid-state reaction method with 0.5–1.5 wt.% of La2O3 or V2O5 as sintering aid. The influences of La2O3 and V2O5 additives on the densification, microstructure and microwave dielectric properties of MTO ceramics were investigated. It is found that La2O3 and V2O5 additives lowered the sintering temperature of MTO ceramics to 1300 °C and 1250 °C respectively, whereas the pure MTO exhibits highest density at 1400 °C. The reduction in sintering temperature with these additives was attributed to the liquid phase effect. The average grain sizes of the MTO ceramics added with La2O3, and V2O5 found to decrease with an increase in wt%. The dielectric constant (εr) was not significantly changed, while unloaded Q values were affected with these additives, and the values were in the range of 92,000–157,550 GHz and 98,000–168,000 GHz with the addition of La2O3 and V2O5, respectively. The dielectric properties are strongly dependent on the densification and the microstructure of the MTO ceramics. The decrease in Q×f o value at higher concentration of La2O3 and V2O5 addition was owing to inhomogeneous grain growth and the liquid phase which is segregated at the grain boundary. In comparison with pure MTO ceramics, La2O3 and V2O5 additives effectively improved the densification and dielectric properties with lowering of sintering temperature. The proposed loss mechanisms suggest that the oxygen vacancies and the average grain sizes are the influencing factors in the dielectric loss of MTO ceramics.  相似文献   

13.
MgTiO3-based microwave dielectric ceramics were prepared successfully by reaction sintering method. The X-ray diffraction patterns of the sintered samples revealed a major phase of MgTiO3-based and CaTiO3 phases, accompanied with Mg2TiO4 or MgTi2O5 determined by the sintering temperature and time. The microwave dielectric properties had a strong dependence of sintering condition due to the different phase compositions and the microstructure characteristics. The ceramics sintered at 1360 °C for 4 h exhibited good microwave dielectric properties: a dielectric constant of 20.3, a high quality factor of 48,723 GHz (at 9GHz), and a temperature coefficient of resonant frequency of ?1.8 ppm/oC. The obtained results demonstrated that the reaction-sintering process is a simple and effective method to prepare the MgTiO3-based ceramics for microwave applications.  相似文献   

14.
In the present work, BaLaAlO4 ceramics with orthorhombic structure similar to K2SO4 in space group P212121 were prepared by a solid state sintering process. The dense BaLaAlO4 ceramics with minor amount of secondary phase have a low dielectric loss and a temperature stable dielectric constant with obvious frequency dependence. A dielectric constant around 15 was obtained at 12 GHz in the present ceramics together with a Qf value over 5,000 GHz.  相似文献   

15.
The design, fabrication and microwave properties of tunable fifth-order combline bandpass filter using etched barium-strontium-titanate (BST) thin films on sapphire (0001) substrates were investigated. At 1 MHz and 1000 kV/cm electric field, the dielectric tunability, the remanent polarization (2Pr) and the coercive electric field (2EC) of BST films were 45.96%, 2.26 µC/cm2 and 81.83 kV/cm, respectively. The loss tangent was 1.36% at zero electric field. After the BST parallel plate capacitors characterization, BST capacitors were loaded at the end of parallel coupled resonators in the design of the tunable filter. With the application of 20 V DC voltage, the center frequency of the filter varied from 1.17 GHz to 1.34 GHz which corresponds to a relative shift of 13.5%.  相似文献   

16.
Li2MgTiO4 (LMT) ceramics which are synthesized using a conventional solid-state reaction route. The LMT ceramic sintered at 1250°C for 4 h had good microwave dielectric properties. However, this sintering temperature is too high to meet the requirement of low-temperature co-fired ceramics (LTCC). In this study, the effects of B2O3 additives and sintering temperature on the microstructure and microwave dielectric properties of LMT ceramics were investigated. The B2O3 additive forms a liquid phase during sintering, which decreases the sintering temperature from 1250°C to 925°C. The LMT ceramic with 8 wt% B2O3 sintered at 925°C for 4 h was found to exhibit optimum microwave dielectric properties: dielectric constant 15.16, quality factor 64,164 GHz, and temperature coefficient of resonant frequency -28.07 ppm/°C. Moreover, co-firing of the LMT ceramic with 8 wt% B2O3 and 20 wt% Ag powder demonstrated good chemical compatibility. Therefore, the LMT ceramics with 8 wt% B2O3 sintered at 925°C for 4 h is suitable for LTCC applications.  相似文献   

17.
A new measuring method and analyzing procedure were proposed to determine the complex dielectric constant of materials with relatively high dielectric constant by a lumped impedance measurement using impedance analyzer. Samples used for the measurement were (Ba0.6Sr0.4)TiO3 (BST) and Ba(Zr0.25Ti0.75)O3 (BZT) ceramics. Micro planar electrodes were formed on the surface of samples by electron beam lithography followed by lift-off method. Complex admittances of these samples were measured up to 3 GHz at different temperatures. Electromagnetic simulations were performed for determining the relative dielectric constant and dielectric loss. The complex dielectric constant vs frequency curves of Ba(Zr0.25Ti0.75)O3 showed a broad dielectric relaxation, while that of (Ba0.6Sr0.4)TiO3 was almost flat up to 3 GHz on high-temperature side of T m at which dielectric constant shows maximum value. Dielectric dispersion properties were discussed from the viewpoint of diffuse phase transition in ferroelectrics.  相似文献   

18.
The nanocomposites of NiCuZnFe2O4-SiO2 were prepared using Microwave-Hydrothermal method at 160°C/45 min.The as-synthesized powders were characterized using X-ray diffraction and Transmission Electron Microscope (TEM).The average particle size of the powders were found to be ~20 nm.The powders were densified at 900°C/30 min using Microwave sintering method. The sintered composite samples were characterized using XRD and Scanning Electron Microscopy (SEM). Crystallite size of the ferrites decreases with an increase of SiO2 content. The density of the composites varies of 93–98% of theoretical density. The densities of the present composites were increasing with the addition of SiO2. The bulk densities of the present composites were increasing with the addition of SiO2. The structural changes in these samples were characterized using Fourier Transform Infrared Spectrometer (FTIR) in the 400–4000 cm?1. The bands in the range of 580–880 cm?1 show a slight increase in intensity, which could be ascribed to the enhanced interactions between the NiCuZnFe2O4 clusters and silica matrix. The resistivity of the sintered samples was increased with an addition of ferrite content. The real and imaginary parts of permittivity and permeability were measured in the frequency range of 1 MHz–1.8 GHz.The addition of SiO2 alters the values of dielectric constant and permeability which is useful to the Multilayer Chip Inductors (MLCI) fabrication.  相似文献   

19.
In this paper, we apply the mode‐matching technique (eigenmode expansion) to formulate an analytical model for a split cylindrical cavity resonator with a thick ceramic film layer sandwiched between two‐layer alumina substrates. We then compute the resonant frequencies with the TE011 mode with an eigenvalue problem approach using the model formula. The quality factor (Q ‐factor) of the resonator is also calculated by applying the perturbation method to the analytical model. The validity of the proposed analytical technique is confirmed by applying this method to the estimation of permittivity of thick films as an inverse problem. Ceramic films (2 µm thickness) were synthesized using a chemical solution method onto 200‐µm‐thick, 50‐mm‐diameter alumina substrates. The complex permittivity of the films was then determined using the TE011 mode split cylindrical cavity resonator in the 10‐GHz band. The extent of the edge effect at a sample insertion space was evaluated by comparing the estimated results through TE wave analysis using the mode‐matching method when the transverse resonance technique and the perturbation method were applied to calculate the resonant frequency and the dielectric Q ‐factor. The results obtained indicate that a difference of 0.153% in the permittivity of the alumina substrate causes differences of 6.10 and 3.75% in the measured permittivity and loss tangent, respectively, of 2‐µm‐thick ceramic film with a permittivity of ∼50. Differences in permittivity and loss tangent were more pronounced with thinner films. It was also confirmed that the estimated results for permittivity and the loss tangent values of these ceramic films were affected by the estimated permittivity value of the alumina substrate. © 2017 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

20.
A high frequency dielectric measurement method was proposed using a non-contact probe. The microwave reflection intensity was measured for Al2O3 and SrTiO3 substrates at room temperature as a function of distance between sample and probe. The difference of reflection intensity for Al2O3 and SrTiO3 substrates was observed in the region where the distance of 0.2 mm between sample and probe, and it was caused from dielectric permittivities of samples. The reflection coefficient of sample was estimated in comparison with results of electromagnetic simulation. The reflection intensity for Al2O3 and SrTiO3 substrates was transformed to dielectric permittivity at reflection intensity minimum point.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号