首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neuroendocrine PC12 cells contain small microvesicles that closely resemble synaptic vesicles in their physical and chemical properties. Two defining characteristics of synaptic vesicles are their homogeneous size and their unique protein composition. Since synaptic vesicles arise by endocytosis from the plasma membrane, nerve terminals and PC12 cells must contain the molecular machinery to sort synaptic vesicles from other membrane proteins and pinch off vesicles of the correct diameter from a precursor compartment. A cell-free reconstitution system was developed that generates vesicles from PC12 membrane precursors in the presence of ATP and brain cytosol and is temperature dependent. At 15 degrees C, surface-labeled synaptic vesicle proteins accumulate in a donor compartment, while labeled synaptic vesicles cannot be detected. The block of synaptic vesicle formation at 15 degrees C enables the use of the monoclonal antibody, KT3, a specific marker for the epitope-tagged synaptic vesicle protein, VAMP-TAg, to label precursors in the synaptic vesicle biogenesis pathway. From membranes labeled in vivo at 15 degrees C, vesicles generated in vitro at 37 degreesC had the sedimentation characteristics of neuroendocrine synaptic vesicles on glycerol velocity gradients, and excluded the transferrin receptor. Therefore, vesiculation and sorting can be studied in this cell-free system.  相似文献   

2.
We have characterized the compartment from which synaptic-like microvesicles (SLMVs), the neuroendocrine counterpart of neuronal synaptic vesicles, originate. For this purpose we have exploited the previous observation that newly synthesized synaptophysin, a membrane marker of synaptic vesicles and SLMVs, is delivered to the latter organelles via the plasma membrane and an internal compartment. Specifically, synaptophysin was labeled by cell surface biotinylation of unstimulated PC12 cells at 18 degrees C, a condition which blocked the appearance of biotinylated synaptophysin in SLMVs and in which there appeared to be no significant exocytosis of SLMVs. The majority of synaptophysin labeled at 18 degrees C with the membrane-impermeant, cleavable sulfo-NHS-SS-biotin was still accessible to extracellularly added MesNa, a 150-D membrane-impermeant thiol-reducing agent, but not to the 68,000-D protein avidin. The SLMVs generated upon reversal of the temperature to 37 degrees C originated exclusively from the membranes containing the MesNa-accessible rather than the MesNa-protected population of synaptophysin molecules. Biogenesis of SLMVs from MesNa-accessible membranes was also observed after a short (2 min) biotinylation of synaptophysin at 37 degrees C followed by chase. In contrast to synaptophysin, transferrin receptor biotinylated at 18 degrees or 37 degrees C became rapidly inaccessible to MesNa. Immunofluorescence and immunogold electron microscopy of PC12 cells revealed, in addition to the previously described perinuclear endosome in which synaptophysin and transferrin receptor are colocalized, a sub-plasmalemmal tubulocisternal membrane system distinct from caveolin-positive caveolae that contained synaptophysin but little, if any, transferrin receptor. The latter synaptophysin was selectively visualized upon digitonin permeabilization and quantitatively extracted, despite paraformaldehyde fixation, by Triton X-100. Synaptophysin biotinylated at 18 degrees C was present in these subplasmalemmal membranes. We conclude that SLMVs originate from a novel compartment that is connected to the plasma membrane via a narrow membrane continuity and lacks transferrin receptor.  相似文献   

3.
Formation of small vesicles resembling synaptic vesicles can be reconstituted in vitro by incubating labeled homogenates of PC12 cells with ATP and two cytoplasmic proteins, AP3 and ARF1 [Faúndez, V., Horng, J.-T. & Kelly, R. B. (1998) Cell 93, 423-432]. To determine whether AP3 was mediating budding from plasma membranes or endosomes the organelle that generated the synaptic vesicles was characterized. The budding activity was enriched in organelles that labeled at 15 degrees C, but not at 4 degrees C, that excluded a marker of plasma membranes and that contained internalized transferrin, indicating that the precursor was an endosome. Vesicles formed from the endosomal precursor in vitro excluded transferrin. We conclude that ARF-mediated vesiculation into synaptic vesicle-sized organelles uses an endosomal precursor and occurs simultaneously in vitro with sorting of synaptic vesicle proteins from other membrane protein constituents of the endosome.  相似文献   

4.
Free-flow electrophoresis (FFE) was used to investigate the intracellular compartments involved in fluid-phase marker, fluoresceine isothiocyanate (FITC)-dextran, transport in the isolated perfused rat liver. One to 2 min after uptake at 37 degrees C, FITC-dextran was found in endosomes with the same electrophoretic mobility as early sorting endosomes labeled either by the hepatocyte-specific marker asialoorosomucoid (ASOR) or by transferrin that enters all liver cells. Labeling at low temperature (16 degrees C) blocked transport of ASOR and dextran in early endosomes. With increasing internalization time (3-13 min) at 37 degrees C, FITC-dextran-labeled compartments co-localized with late, ASOR-containing endosomes. Since localization of FITC-dextran in late transcytotic compartments was not observed upon FFE separation, it is concluded that the majority of internalized markers is directed to lysosomes. The FITC-label did not account for the predominant lysosomal targeting of the dextran, since [3H]dextran-labeled endosomes exhibited an identical FFE pattern. Taken together, these data indicate that the fluid-phase marker dextran is transported through intracellular compartments with identical characteristics as endosome subcompartments of the receptor-mediated lysosomal route.  相似文献   

5.
The GLUT4 system in muscle and fat cells plays an important role in whole-body glucose homeostasis. Insulin stimulates the translocation of GLUT4 from an intracellular storage compartment to the cell surface. The nature of this compartment remains largely unknown. We review recent studies describing the biogenesis and molecular constituents of the GLUT4 storage compartment and conclude that it is segregated from the endosomal and biosynthetic pathways. Further, we present evidence to suggest that the GLUT4 storage compartment moves directly to the plasma membrane in response to insulin and, hence, is analogous to small synaptic vesicles in neurons. We propose that the GLUT4 storage compartment be referred to as GLUT4 storage vesicles or GSVs.  相似文献   

6.
By immunofluorescence microscopic observation, monoclonal and polyclonal antibodies against a synthetic actin C-terminal peptide were found to stain too colloguial, ambiguous punctuate structures distributed throughout the cytoplasm of 3Y1 cells, independently of actin stress fibers. Antibody against rab5, a small GTP binding protein of the sorting endosome, and anti-actin antibody co-stained these punctuate structures. On the other hand, transferrin receptor, a well characterized maker of the sorting and recycling endosomes, colocalized with actin on the vesicular structures at the cell peripheral region but not at the perinuclear area where the recycling endosome localized. These observations suggest that actin molecules localize on the sorting endosomes. Tropomyosin, F-actin binding protein, also colocalized with actin on the sorting endosomes. From these results, we proposed that actin-filaments with tropomyosin constitute the membrane skeleton on the sorting endosome surface. This article is the first report to show that actin-filaments localize on the intact endosomes.  相似文献   

7.
Peptides labelled with the fluorophore cyanine 3 were used to study naturally expressed neuropeptide receptors by confocal microscopy in continuous cell lines, primary cultures, and unfixed tissue. Swiss 3T3 fibroblasts bound cyanine 3-gastrin-releasing peptide at 4 degrees C, and internalized the peptide after 10 min at 37 degrees C. Internalization was specific, since it was blocked by incubation with unlabelled peptide. Primary cultures of myenteric neurons of the guinea pig incubated with cyanine 3-substance P at 4 degrees C had specific surface labelling. After 30 s at 37 degrees C, the peptide was internalized into vesicles in both the soma and neurites. Direct observation of live neurons showed movement of fluorescent vesicles to a perinuclear region after 30 min. Endocytosis was associated with a loss of surface binding sites. Unfixed whole mounts of guinea pig and rat ileum were incubated with cyanine 3-neurokinin A at 4 degrees C. After 5 min at 37 degrees C, Cy3-neurokinin A was specifically internalized in neurons and smooth muscle cells. After 30 min, a perinuclear labelling occurred in some cells. Labelling in rat neurons was diminished by the NK3-R antagonist SR142801. Thus, cyanine 3-neuropeptides are valuable tools to study expression and endocytosis of naturally expressed receptors.  相似文献   

8.
Cross-linking of surface receptors results in altered receptor trafficking in the endocytic system. To better understand the cellular and molecular mechanisms by which receptor cross-linking affects the intracellular trafficking of both ligand and receptor, we studied the intracellular trafficking of the transferrin receptor (TfR) bound to multivalent-transferrin (Tf10) which was prepared by chemical cross-linking of transferrin (Tf). Tf10 was internalized about two times slower than Tf and was retained four times longer than Tf, without being degraded in CHO cells. The intracellular localization of Tf10 was investigated using fluorescence and electron microscopy. Tf10 was not delivered to the lysosomal pathway followed by low density lipoprotein but remained accessible to Tf in the pericentriolar endocytic recycling compartment for at least 60 min. The retained Tf10 was TfR-associated as demonstrated by a reduction in surface TfR number when cells were incubated with Tf10. The presence of Tf10 within the recycling compartment did not affect trafficking of subsequently endocytosed Tf. Retention of Tf10 within the recycling compartment did not require the cytoplasmic domain of the TfR since Tf10 exited cells with the same rate when bound to the wild-type TfR or a mutated receptor with only four amino acids in the cytoplasmic tail. Thus, cross-linking of surface receptors by a multivalent ligand acts as a lumenal retention signal within the recycling compartment. The data presented here show that the recycling compartment labeled by Tf10 is a long-lived organelle along the early endosome recycling pathway that remains fusion accessible to subsequently endocytosed Tf.  相似文献   

9.
Excessive brain iron has been found in several neurodegenerative diseases. However, little information is available about mechanism of iron uptake by different types of brain cells including neurons. In this study, transferrin-bound iron (Tf-Fe) accumulation in the cultured cerebellar granule cell was investigated in vitro. After 5 days of culture, the cells were incubated with 1 microM of double-labelled transferrin (1251-Tf-59Fe) at 37 degrees C for 60 min. The cellular Tf-Fe and transferrin (Tf) uptake was analysed. The result showed (1) Tf uptake by the cells increased rapidly at the first 5 min, reaching its maximum after about 20 min of incubation; (2) Tf-Fe uptake kept increasing in a linear manner during the whole period of incubation; (3) the addition of either NH4Cl or CH3NH2, the blockers of Tf-Fe uptake via inhibiting iron release from Tf within endosomes, decreased the cellular Tf-Fe uptake but had no significant effect on Tf uptake; (4) trypsin and unlabelled Tf-Fe inhibited the uptake rate of Tf-Fe as well as Tf. The results suggested that Tf-Fe transport across the membrane of this type of neuron, much like other mammalian cells, was mediated by Tf-TfR endocytosis. Dysfunction of Tf or TfR would possibly lead to iron irregulation in the brain and consequently cause damage to neuronal functions.  相似文献   

10.
This study was undertaken to determine the fate of circulating NH2-terminal propeptide of type I procollagen (PINP) in rats. Radiolabeled PINP showed a biphasic serum decay curve after intravenous injection. 79% of the material disappeared from the blood during the initial alpha-phase (t1/2 alpha = 0.6 min), while the remaining 21% was eliminated with a t1/2 beta of 3.3 min. The major site of uptake was the liver, 78, 1, and 21% of its radioactivity being recovered in isolated liver endothelial cells (LEC), Kupffer cells, and parenchymal cells, respectively. In LEC, fluorescently labeled PINP accumulated in small (0.1 microns) peripheral and larger (> 0.1 microns) perinuclear vesicles within 10 min at 37 degrees C after a binding pulse at 4 degrees C. These grew in size with increasing chasing time, reaching a maximum diameter of 1 microns or more after 30 min, and taking the shape of rings that were stained only along their periphery. At chase intervals exceeding 30 min, the size of the vesicles decreased, and after 60 min the stain appeared in smaller, densely stained perinuclearly located vesicles. Degradation of 125I-PINP to free smaller fragments and 125I- was significant after 30 min. Only formaldehyde-treated albumin, acetylated LDL, polyinosinic acid and NH2-terminal propeptide of type III procollagen (PIIINP) competed with PINP for uptake. These findings indicate that clearance of PINP and PIIINP, which are normal waste products generated in large quantities, is a physiological function of the scavenger receptor in LEC.  相似文献   

11.
The present study examined the lectin labeling of diverse morphological forms of microglia in culture. Similar to amoeboid microglial cells in vivo, polymorphic microglia showed lectin labeling at their plasma membranes, as well as in a few cytoplasmic vesicles and vacuoles. This labeling pattern was observed in cultured microglia incubated with isolectin at 4 degrees C for 30 min. Five minutes after the temperature was raised to 37 degrees C, the surface lectin receptors appeared to be internalized, as shown by the occurrence of many subsurface lectin-labeled vesicles, vacuoles and tubule-like structures. With longer incubation (up to 1-2 h at 37 degrees C), many lysosomes and a few trans-Golgi saccules and associated lysosome-like structures became labeled. Concomitant with these changes was a reduction of lectin labeling at the plasma, with labeling having vanished in most of the cells after 1-2 h of incubation. By 24 h, only a few cells retained surface lectin labeling. It appears, therefore, that irrespective of morphology, lectin labeling (including its intracellular pathway) of microglia in culture parallels that of amoeboid microglia in vivo. This would offer a useful model for the study of lectin turnover in microglia and help to explain the roles of such receptors in microglial differentiation and function.  相似文献   

12.
Chediak-Higashi Syndrome (CHS) is an autosomal recessive disease affecting secretory granules and lysosomes-like organelles. In CHS fibroblasts, acidic organelles are abnormally large and clustered in the perinuclear area. We have analyzed fibroblast cell lines from a CHS patient and from the murine model for CHS, the beige mouse, to determine which lysosome-like compartments are affected. Uptake of neutral red showed that in both beige and CHS cell lines, the acidic organelles were markedly clustered in the perinuclear region of the cells. Giant organelles (> 4 microns) were observed in a fraction of the cells, and these were more dramatic in the beige fibroblasts than in the CHS fibroblasts. The total dye uptake of both mutant cell lines was similar to their respective wild type fibroblasts, suggesting that the overall volume of acidic compartments is unaffected by the disorder. Histochemistry and immunofluorescence showed that the giant organelles in both beige and CHS fibroblasts were positive for cathepsin D, lysosome-associated membrane protein (LAMP) 1, LAMP 2, and a 120-kD lysosomal glycoprotein, all marker proteins for late endosomes and lysosomes. The giant organelles were also negative for transferrin receptor and mannose-6-phosphate receptor, and most of them were also negative for rab 7. This distribution of marker proteins shows that the giant organelles in both beige and CHS are derived from late compartments of the endocytic pathway. This conclusion was confirmed using endocytic tracers. BSA was transported to the giant organelles, but only after long incubation times, and only at 37 degrees C. alpha 2-Macroglobulin was taken up and degraded at similar rates by CHS or beige cells and their respective wild type control cells. Taken together, our results indicate that the mutation in CHS specifically affects late endosomes and lysosomes, with little or no effect on early endosomes. Although the mutation clearly causes mislocalization of these organelles, it appears to have little effect on their endocytic and degradative functions.  相似文献   

13.
We describe a simple subcellular fractionation scheme aimed at separating early endosomes from the plasma membrane in view of studying the possible arrival of plasma membrane-bound toxins, proteins or other extracellular ligands in endosomes. Plasma membrane proteins were labeled with the impermeable reagent sulfosuccinimidyl-6-(biotinamido)hexanoate (NHS-LC) biotin at 4 degrees C. In a separate set of cells, early endosomes were labeled by internalization of horseradish peroxidase from the medium for 5 min. The first step of the purification, which consists of a step sucrose gradient, led to three fractions, respectively: enriched in biosynthetic membranes (interface 3), in plasma membrane and early endosomes (interface 2), and in late endosomes (interface 1). The second step, in which interface 2 was loaded at the bottom of a 17% Percoll gradient, led to the separation of the plasma membrane, including caveolae and cholesterol-glycolipid rafts, from early endosomes. Western blot analysis of the fractions from the Percoll gradient showed that the transferrin receptor, the small GTPases rab5 and Arf6, as well as annexin II were present both at the plasma membrane and in early endosomes, whereas the caveolar marker caveolin, 1co, migrated only with the biotinylated plasma membrane proteins. We used this fractionation procedure to show that the pore-forming toxin aerolysin does not reach the endocytic compartments of baby hamster kidney (BHK) cells. The procedure should be generally useful in rapidly determining whether extracellular proteins or ligands reach endosomes.  相似文献   

14.
We have previously demonstrated that the preendosomal compartment in addition to clathrin-coated vesicles, comprises distinct nonclathrin coated endocytic vesicles mediating clathrin-independent endocytosis (Hansen, S. H., K. Sandvig, and B. van Deurs. 1991. J. Cell Biol. 113:731-741). Using K+ depletion in HEp-2 cells to block clathrin-dependent but not clathrin-independent endocytosis, we have now traced the intracellular routing of these nonclathrin coated vesicles to see whether molecules internalized by clathrin-independent endocytosis are delivered to a unique compartment or whether they reach the same early and late endosomes as encountered by molecules internalized with high efficiency through clathrin-coated pits and vesicles. We find that Con A-gold internalized by clathrin-independent endocytosis is delivered to endosomes containing transferrin receptors. After incubation of K(+)-depleted cells with Con A-gold for 15 min, approximately 75% of Con A-gold in endosomes is colocalized with transferrin receptors. Endosomes containing only Con A-gold may be accounted for either by depletion of existing endosomes for transferrin receptors or by de novo generation of endosomes. Cationized gold and BSA-gold internalized in K(+)-depleted cells are also delivered to endosomes containing transferrin receptors. h-lamp-1-enriched compartments are only reached occasionally within 30 min in K(+)-depleted as well as in control cells. Thus, preendosomal vesicles generated by clathrin-independent endocytosis do not fuse to any marked degree with late endocytic compartments. These data show that in HEp-2 cells, molecules endocytosed without clathrin are delivered to the same endosomes as reached by transferrin receptors internalized through clathrin-coated pits.  相似文献   

15.
A murine IgM monoclonal antibody (mAb), IL-A77, has been generated that recognises the bovine transferrin receptor (TfR) and will be a useful tool to measure the activation state of bovine lymphocytes and macrophages. The antigen is detected on immature erythroid cells and proliferating lymphocytes. It is undetectable on resting lymphocytes, but appears within 24 h after stimulation with concanavalin A (ConA) or pokeweed mitogen (PWM). Immune precipitations of lysates of both labeled activated lymphocytes and bone marrow erythroid cells showed that, similar to human TfR, the bovine receptor is a disulfide-bonded dimer of two identical chains of M(r) 97,000. A similar 97,000 M(r) protein was eluted from a column containing immobilised bovine transferrin (Tf) using conditions known to elute the human TfR, and this protein was recognised by mAb IL-A77, proving that it detected bovine TfR. Although the mAb inhibited binding of transferrin to its receptor, it did not block proliferation of Theileria parva-transformed or ConA-stimulated lymphocytes. When cells were metabolically labeled with 35S-methionine, a second 90,000-M(r) TfR band was detected in Theileria parva-transformed cells, but not in stimulated lymphocytes. This form of the TfR was not expressed on the cell surface. It may be an.  相似文献   

16.
The separation of functional early and late endosomes from other cellular compartments by free-flow electrophoresis (FFE) has been previously demonstrated in nonpolarized cells. Here, using 125I-labeled anti-secretory component antibodies ([125I]SC Ab) and FITC-labeled asialoorosomucoid (FITC-ASOR) as markers of the transcytotic and lysosomal pathway, respectively, we demonstrate the separation of three distinct endosome subpopulations from polarized rat hepatocytes. Internalization of both markers at 16 degrees C resulted in their accumulation in a common endosome compartment, indicating that both the transcytotic and the lysosomal pathways are arrested in the sorting early endosome at temperatures below 20 degrees C. After chase of the markers from early endosomes into the transcytotic or the degradative route at 37 degrees C, transcytotic endosomes carrying [125I]SC Ab migrated with an electrophoretic motility between early and late endosomes while late endosomes labeled with FITC-ASOR were deflected more towards the anode than early endosomes. These data indicate that in rat hepatocytes, the transcytotic and lysosomal pathways utilize a common (i.e. early endosomes) and two distinct endosome subpopulations (i.e. transcytotic endosomes, late endosomes) prior to delivering proteins for biliary secretion or lysosomal degradation, respectively.  相似文献   

17.
BR96 is a monoclonal antibody (MAb) that recognizes many human carcinomas and can kill antigen-positive tumor cells in vitro. Using both gold and radiolabeled MAb, the distribution and cellular processing of BR96 during cytolysis has been determined. After a brief (< 3 minutes) MAb treatment, cells in suspension are stained by the nuclear viability dye propidium iodide. Whole MAb and F(ab')2 fragments are equally cytotoxic; monovalent F(ab) fragments, however, have no effect on dye uptake unless cross-linked with goat anti-mouse IgG. The level of toxicity is dependent on both MAb dose and on cell surface receptor density. Cell contact may regulate receptor expression. BR96 receptors are more abundant on cells migrating into the open areas of a scratch wounded confluent culture than on the adjacent contact-inhibited cells. BR96 can also inhibit the anchorage-independent growth of tumor cells in soft agar showing that its effects on propidium iodide staining are not due to transient changes in membrane permeability. Immunogold electron microscopy reveals that, after a 1-minute treatment, BR96 induces significant infolding of the plasma membrane and that internalized MAb is localized to these structures. Immediately thereafter, large cell surface and intracellular vesicles form, mitochondria are swollen, and membrane integrity is lost. Therefore, BR96 seems to cause morphological changes characteristic of necrosis rather than apoptosis. When bound to adherent carcinoma cells, BR96 is distributed uniformly on the apical surface of cells labeled at 4 C and is enriched at points of cell substratum contact. Upon warming of the cells to 37 C, BR96 localizes in small perinuclear clusters and the cell margin is now devoid of label. Immunogold electron microscopy reveals that BR96 undergoes receptor mediated internalization and is localized within the same coated pits, endosomes, and lysosomes as the transferrin receptor. Quantitative studies using iodinated BR96 show that after 6 hours of chase, a maximum of 53% of the radiolabel is located within the intracellular pool. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicates that 84% of this fraction is nondegraded. BR96 probably cycles between the medium and intracellular pools because the remainder of the radiolabel is in the medium as intact MAb. By 24 hours of chase, the intracellular fraction drops to 30%, while the remaining 70% is present in the culture medium, mostly as low molecular weight degradation products.  相似文献   

18.
In adipocytes, insulin stimulates the translocation of the glucose transporter, GLUT4, from an intracellular storage compartment to the cell surface. Substantial evidence exists to suggest that in the basal state GLUT4 resides in discrete storage vesicles. A direct interaction of GLUT4 storage vesicles with the plasma membrane has been implicated because the v-SNARE, vesicle-associated membrane protein-2 (VAMP2), appears to be a specific component of these vesicles. In the present study we sought to identify the cognate target SNAREs for VAMP2 in mouse 3T3-L1 adipocytes. Membrane fractions were isolated from adipocytes and probed by far Western blotting with the cytosolic portion of VAMP2 fused to glutathione S-transferase. Two plasma membrane-enriched proteins, p25 and p35, were specifically labeled with this probe. By using a combination of immunoblotting, detergent extraction, and anion exchange chromatography, we identified p35 as Syntaxin-4 and p25 as the recently identified murine SNAP-25 homologue, Syndet (mSNAP-23). By using surface plasmon resonance we show that VAMP2, Syntaxin-4, and Syndet form a ternary SDS-resistant SNARE complex. Microinjection of anti-Syndet antibodies into 3T3-L1 adipocytes, or incubation of permeabilized adipocytes with a synthetic peptide comprising the C-terminal 24 amino acids of Syndet, inhibited insulin-stimulated GLUT4 translocation to the cell surface by approximately 40%. GLUT1 trafficking remained unaffected by the presence of the peptide. Our data suggest that Syntaxin-4 and Syndet are important cell-surface target SNAREs within adipocytes that regulate docking and fusion of GLUT-4-containing vesicles with the plasma membrane in response to insulin.  相似文献   

19.
beta-2 Adrenergic receptors (B2ARs) are endocytosed by clathrin-coated pits. This process serves specialized functions in signal transduction and receptor regulation, raising the question of whether B2ARs are associated with biochemically specialized membrane vesicles during their endocytic trafficking. Here we show that B2ARs are endocytosed by a distinct subpopulation of clathrin-coated pits, which represent a limited subset of coated pits present in the plasma membrane, even in cells overexpressing both B2ARs and beta-arrestin. Coated pits mediating agonist-induced endocytosis of B2ARs differ from other coated pits mediating constitutive endocytosis of transferrin receptors in their temperature dependence for fission from the plasma membrane and in the association of their membrane coats with beta-arrestin. Endocytosis of these coated pits generates endocytic vesicles selectively enriched in B2ARs, which fuse within approximately 10 min after their formation with a common population of endosomes containing both B2ARs and transferrin receptors. These observations demonstrate, for the first time, the existence of a functionally and biochemically distinct subpopulation of clathrin-coated pits that mediate the agonist-regulated endocytosis of G-protein-coupled receptors, and they suggest a new model for the formation of compositionally specialized membrane vesicles at the earliest stage of the endocytic pathway.  相似文献   

20.
Using isolated rat cardiomyocytes we have examined: 1) the effect of insulin on the cellular distribution of glucose transporter 4 (GLUT4) and GLUT1, 2) the total amount of these transporters, and 3) the co-localization of GLUT4, GLUT1, and secretory carrier membrane proteins (SCAMPs) in intracellular membranes. Insulin induced 5.7- and 2.7-fold increases in GLUT4 and GLUT1 at the cell surface, respectively, as determined by the nonpermeant photoaffinity label [3H]2-N-[4(1-azi-2,2,2-trifluoroethyl)benzoyl]-1, 3-bis-(D-mannos-4-yloxy)propyl-2-amine. The total amount of GLUT1, as determined by quantitative Western blot analysis of cell homogenates, was found to represent a substantial fraction ( approximately 30%) of the total glucose transporter content. Intracellular GLUT4-containing vesicles were immunoisolated from low density microsomes by using monoclonal anti-GLUT4 (1F8) or anti-SCAMP antibodies (3F8) coupled to either agarose or acrylamide. With these different immunoisolation conditions two GLUT4 membrane pools were found in nonstimulated cells: one pool with a high proportion of GLUT4 and a low content in GLUT1 and SCAMP 39 (pool 1) and a second GLUT4 pool with a high content of GLUT1 and SCAMP 39 (pool 2). The existence of pool 1 was confirmed by immunotitration of intracellular GLUT4 membranes with 1F8-acrylamide. Acute insulin treatment caused the depletion of GLUT4 in both pools and of GLUT1 and SCAMP 39 in pool 2. In conclusion: 1) GLUT4 is the major glucose transporter to be recruited to the surface of cardiomyocytes in response to insulin; 2) these cells express a high level of GLUT1; and 3) intracellular GLUT4-containing vesicles consist of at least two populations, which is compatible with recently proposed models of GLUT4 trafficking in adipocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号