首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pancreatic islets prelabelled with either 86Rb or 45Ca were exposed to a rise in D-glucose concentration from 2.8 to 16.7 mM whilst perifused in the presence of 2 microM glibenclamide, 30 mM extracellular K+ and both 30 mM K+ and 250 microM diazoxide. In all three situations, the rise in glucose concentration provoked a dramatic increase in insulin output, despite unchanged or even increased efflux of 86Rb from the prelabelled islets. Also in all three situations, glucose sharply decreased effluent radioactivity from islets prelabelled with 45Ca but perifused in the absence of extracellular Ca2+, while augmenting 45Ca efflux, to a variable extent, from islets perifused at normal extracellular Ca2+ concentration (1.0 mM). It is proposed, therefore, that the insulinotropic action of D-glucose in depolarized islets, and presumably also under normal conditions, may involve the gating of voltage-insensitive Ca2+ channels.  相似文献   

2.
Chronic activation of NMDA receptors by glutamate is toxic to cultured neurons. The extensive Ca2+ entry accompanying receptor activation is largely accumulated by the intracellular mitochondria, with resultant effects on mitochondrial membrane potential, ATP synthesis, glycolysis, reactive oxygen species generation and ultimately failure of cytoplasmic Ca2+ homeostasis and cell death. Each of these parameters is inter-related and in this review we describe attempts to separate out each factor to establish the sequence of events following NMDA-receptor activation. The conclusion is that mitochondrial Ca2+ accumulation is a key event in glutamate excitotoxicity, and that cells maintained by glycolysis in the absence of a mitochondrial membrane potential are highly resistant to glutamate excitotoxicity.  相似文献   

3.
Pimobendan is a new class of inotropic drug that augments Ca2+ sensitivity and inhibits phosphodiesterase (PDE) activity in cardiomyocytes. To examine the insulinotropic effect of pimobendan in pancreatic beta-cells, which have an intracellular signaling mechanism similar to that of cardiomyocytes, we measured insulin release from rat isolated islets of Langerhans. Pimobendan augmented glucose-induced insulin release in a dose-dependent manner, but did not increase cAMP content in pancreatic islets, indicating that the PDE inhibitory effects may not be important in beta-cells. This agent increased the intracellular Ca2+ concentration ([Ca2+]i) in the presence of 30 mM K+, 16.7 mM glucose, and 200 microM diazoxide, but failed to enhance the 30 mM K+-evoked [Ca2+]i rise in the presence of 3.3 mM glucose. Insulin release evoked by 30 mM K+ in 3.3 mM glucose was augmented. Then, the direct effects of pimobendan on the Ca2+-sensitive exocytotic apparatus were examined using electrically permeabilized islets in which [Ca2+]i can be manipulated. Pimobendan (50 microM) significantly augmented insulin release at 0.32 microM Ca2+, and a lower threshold for Ca2+-induced insulin release was apparent in pimobendan-treated islets. Moreover, 1 microM KN93 (Ca2+/calmodulin-dependent protein kinase II inhibitor) significantly suppressed this augmentation. Pimobendan, therefore, enhances insulin release by directly sensitizing the intracellular Ca2+-sensitive exocytotic mechanism distal to the [Ca2+]i rise. In addition, Ca2+/calmodulin-dependent protein kinase II activation may at least in part be involved in this Ca2+ sensitization for exocytosis of insulin secretory granules.  相似文献   

4.
High concentrations of glucose are considered to be toxic for the pancreatic beta-cell. However, the mechanisms underlying beta-cell dysfunction and resulting cell death are not fully characterized. In the present study we have demonstrated that incubation of pancreatic islets and beta-cells from ob/ob mice and Wistar rats with glucose induced a process of apoptotic beta-cell death, as shown by DNA laddering, TdT-mediated dUTP-biotin nick end-labeling (TUNEL) technique, and by using DNA-staining dye HOECHST 33342. The obtained results show that the percentage of apoptotic cells was dependent on glucose concentration, being minimal at 11 mM glucose. At a concentration of 100 microM, aurintricarboxylic acid, an inhibitor of endonuclease activity, almost completely inhibited apoptosis triggered by 17 mM glucose. We have also shown that long term incubation with 100 microM sulfonylurea, tolbutamide, triggered apoptosis in pancreatic beta-cells. The process of beta-cell death induced by high glucose concentration and tolbutamide were Ca2+-dependent, because introduction to the culture medium of 50 microM D-600 or 200 microM diazoxide, which blocked glucose- and tolbutamide-induced [Ca2+]i increase, inhibited apoptosis. Thus, this study shows for the first time that high glucose concentrations and tolbutamide induce apoptosis in pancreatic beta-cells, and that this process is Ca2+-dependent.  相似文献   

5.
1. The effects of nifedipine on both levcromakalim-induced membrane currents and unitary currents in pig proximal urethra were investigated by use of patch-clamp techniques (conventional whole-cell configuration and cell-attached patches). 2. Nifedipine had a voltage-dependent inhibitory effect on voltage-dependent Ba2+ currents at - 50 mV (Ki=30.6 nM). 3. In current-clamp mode, subsequent application of higher concentrations of nifedipine (> or =30 microM) caused a significant depolarization even after the membrane potential had been hyperpolarized to approximately -82 mV by application of 100 microM levcromakalim. 4. The 100 microM levcromakalim-induced inward current (symmetrical 140 mM K+ conditions, -50 mV) was inhibited by additional application of three different types of Ca antagonists (nifedipine, verapamil and diltiazem, all at 100 microM). In contrast, Bay K 8644 (1 microM) possessed no activating effect on the amplitude of this glibenclamide-sensitive current. 5. When 100 microM nifedipine was included in the pipette solution during conventional whole-cell recording at -50 mV, application of levcromakalim (100 microM) caused a significant inward membrane current which was suppressed by 5 microM glibenclamide. On the other hand, inclusion of 5 microM glibenclamide in the pipette solution prevented levcromakalim from inducing an inward membrane current. 6. The levcromakalim-induced K+ channel openings in cell-attached configuration were suppressed by subsequent application of 5 microM glibenclamide but not of 100 microM nifedipine. 7. These results suggest that in pig proximal urethra, nifedipine inhibits the glibenclamide-sensitive 43 pS K+ channel activity mainly through extracellular blocking actions on the K+ channel itself.  相似文献   

6.
Rat liver mitochondria have a specific Ca2+ release pathway which operates when NAD+ is hydrolysed to nicotinamide and ADPribose. NAD+ hydrolysis is Ca(2+)-dependent and inhibited by cyclosporine A (CSA). Mitochondrial Ca2+ release can be activated by the prooxidant t-butylhydroperoxide (tbh) or by gliotoxin (GT), a fungal metabolite of the epipolythiodioxopiperazine group. Tbh oxidizes NADH to NAD+ through an enzyme cascade consisting of glutathione peroxidase, glutathione reductase, and the energy linked transhydrogenase, whereas GT oxidizes some vicinal thiols to the disulfide form, a prerequisite for NAD+ hydrolysis. We report now that rat skeletal muscle mitochondria also contain a specific Ca2+ release pathway activated by both tbh and GT. Ca2+ release increases with the mitochondrial Ca2+ load, is completely inhibited in the presence of CSA, and is paralleled by pyridine nucleotide oxidation. In the presence of tbh and GT, mitochondria do not lose their membrane potential and do not swell, provided continuous release and re-uptake of Ca2+ ('Ca2+ cycling') is prevented. These data support the notion that both tbh- and GT-induced Ca2+ release are not the consequence of an unspecific increase of the inner membrane permeability ('pore' formation). Tbh induces Ca2+ release from rat skeletal muscle less efficiently than from liver mitochondria indicating that the coupling between tbh and NADH oxidation is much weaker in skeletal muscle mitochondria. This conclusion is corroborated by a much lower glutathione peroxidase activity in skeletal muscle than in liver mitochondria. The prooxidant-dependent pathway promotes, under drastic conditions (high mitochondrial Ca2+ loads and high tbh concentrations), Ca2+ release to about the same extent and rate as the Na+/Ca2+ exchanger. This renders the prooxidant-dependent pathway relevant in the pathophysiology of mitochondrial myopathies where its activation by an increased generation of reactive oxygen species probably results in excessive Ca2+ cycling and damage to mitochondria.  相似文献   

7.
The magnitude and space-temporal profile of the intracellular Ca2+ transients are determined both by the mechanism that decrease and increase calcium levels in the cytoplasm. By the use of cocktails with different content of specific inhibitors of the extrusion and sequester mechanisms, the ability of mitochondrial Ca2+ transport to limit the elevation in free cytosolic Ca2+ concentration, following an imposed Ca2+ load was reexamined, indicating variable data with respect to various cells. In chromaffin cells, inhibition of mitochondrial Ca2+ accumulation with protonophore, dramatically modifies the shape of the [Ca2+]c response, indicating that mitochondrial Ca2+ uptake is an important mechanism for clearance of large Ca2+ loads. By contrast, using digital imaging in the presence of specific mitochondria inhibitors to investigate the [Ca2+]c responses of cerebellar granule cells in which ATP generation has been totally separated from mitochondrial Ca2+ transport, indicates surprising results: it was confirmed that mitochondria in these cells accumulate Ca2+ entering the cell in response to plasma membrane depolarization, but specific abolition of mitochondrial Ca2+ accumulation without ATP depletion significantly decreases the bulk cytoplasmic Ca2+ transients generated by elevated KCl levels, whereas the response in greatly increased when protonophore are present and ATP/ADP ratios are allowed to collapse. The results suggest that nonmitochondrial ATP-dependent transport pathways are primarily responsible for removing excess Ca2+ from the cytoplasm. Far from restricting the elevation in [Ca2+]c in response to a Ca2+ load, functional mitochondria may enhance the elevation in the bulk cytoplasm. The existent conflict of data, suggests the need for a new reevaluation of the role of mitochondria in Ca2+ clearance, and the possibility that mitochondria contribute to, rather than protect against, excitoxicity has to be investigated.  相似文献   

8.
Thapsigargin, previously reported to release Ca2+ from non-mitochondrial stores of different cell types, as well as nigericin, were found, when used at high concentrations, to release Ca2+ and collapse the membrane potential of Trypanosoma brucei bloodstream and procyclic trypomastigotes mitochondria in situ. At similarly high concentrations (> 10 microM), thapsigargin was also found to release Ca2+ and collapse the membrane potential of isolated rat liver mitochondria. These results indicate that care should be taken when attributing the effects of thapsigargin in intact cells to the specific inhibition of the sarcoplasmic and endoplasmic reticulum Ca(2+)-ATPase family of calcium pumps. In addition, we have found no evidence for an increase in intracellular Ca2+ by release of the ion from intracellular stores by nigericin, measuring changes in cytosolic Ca2+ by dual wavelength spectrofluorometry in fura-2-loaded T. brucei bloodstream trypomastigotes or measuring Ca2+ transport in digitonin-permeabilized cells.  相似文献   

9.
In the present paper the effects of antimycotics with imidazole structure on the activity of various ion currents of mouse pancreatic B-cells and insulin secretion from isolated islets have been studied. Clotrimazole (0.1-10 microM, bath solution without albumin) reversibly inhibited the whole-cell K + ATP current studied with the patch-clamp technique and concomitantly depolarized the membrane potential. Two other structurally related compounds, econazole and ketoconazole, exhibited similar effects on the whole-cell K + ATP current. Clotrimazole also inhibited the current through single K + ATP channels measured in the inside-out configuration. According to these results it seems unlikely that a cytoplasmic factor is involved in the action of clotrimazole on K + ATP currents. Clotrimazole (10 microM) also reduced the current through voltage-dependent Ca2+ and K+ channels and altered inactivation kinetics. Moreover, clotrimazole reversibly abolished a recently described inward current which is induced by hypotonic cell swelling. The results show that clotrimazole altered the activity of all ion currents in B-cells investigated in this study. Clotrimazole (3-100 microM, solution with albumin) irreversibly inhibited insulin secretion from isolated islets. With econazole and ketoconazole similar effects on hormone release were observed. The changes in the activity and kinetics of voltage-dependent Ca2+ and K+ currents are likely to contribute to the observed inhibition of insulin secretion. However, we cannot entirely rule out that imidazole antimycotics also interfere with a step in stimulus-secretion coupling distal to changes in membrane potential.  相似文献   

10.
The present study was undertaken to examine the effects of pinacidil and levcromakalim, two potassium, channel openers, on human internal mammary artery (HIMA) obtained from patients undergoing coronary artery bypass surgery, and to clarify the contribution of different K+ channel subtypes in pinacidil and levcromakalim action in this blood vessel. Pinacidil and levcromakalim induced a concentration-dependent relaxation of the precontracted arterial segments (pEC50 = 5.77 +/- 0.05 and 6.89 +/- 0.03, respectively), 4-Aminopyridine (3 mM), a non-selective blocker of K+ channels, induced significant shifts to the right of the concentration-response curves for pinacidil and levcromakalim. Tetraethylammonium (6 mM), charybdotoxin (0.4 microM) and apamin (0.1 microM), blockers of Ca(2+)-sensitive K+ channels, had no effect on the pinacidil- and levcromakalim-evoked relaxation. Glibenclamide (0.1-10 microM), a selective blocker of adenosine triphosphate (ATP)-sensitive K+ channels, competitively antagonized the response to levcromakalim (pKB = 7.92 +/- 0.07). In contrast, glibenclamide, in significantly higher concentrations (3-30 microM), non-competitively antagonized the response to pinacidil. High concentrations of pinacidil (> 10 microM) relaxed arterial rings bathed by a medium containing 100 mM K+ with maximum response 83 +/- 6%. Under the same conditions, the maximum levcromakalim-induced relaxation on HIMA was almost abolished (15 +/- 2%). It is concluded that pinacidil and levcromakalim do not relax the HIMA through the same subtype of K+ channel. ATP-sensitive K+ channels are probably involved in levcromakalim- but not in a pinacidil-induced relaxation in the HIMA. In addition, in pinacidil-induced relaxation of the HIMA, K+ channel-independent mechanisms seem to be involved.  相似文献   

11.
In the rat pancreatic beta cell, low concentrations of glucose potentiate D-glyceraldehyde (GA)-induced insulin release without any potentiation of the triose-induced elevation of cytosolic free Ca2+ concentration. Namely, 2-3 mM glucose strongly potentiates 5 mM GA-induced insulin release, and the combination of stimulatory concentration of glucose (10 mM) and 5 mM GA elicits far more than additive insulin release: this glucose action is independent of ATP-sensitive K+ channel closure because it can be seen in the presence of diazoxide, an opener of the K+ channel. The triose-induced elevation of cytosolic free Ca2+ concentration was not potentiated by the presence of 3 mM glucose, and oxidation of labeled GA by the islet cells was not enhanced by the presence of glucose. The glucose action can be mimicked by mannose, but not by galactose, and was suppressed by inhibition of glucose phosphorylation with mannoheptulose or 2-deoxyglucose. Glucose also potentiates 2-ketoisocaproate-induced insulin release. In contrast, a combination of GA and 2-ketoisocaproate elicits only additive insulin release. Strikingly, 3 mM glucose does not potentiate insulin release in response to a depolarizing concentration of K+. Therefore, at least two signal pathways, one from upper glycolytic flux and one from mitochondrial metabolism, must converge to provide the potentiation of insulin release. We conclude that the upper glycolytic flux, acting at a site unrelated to the elevation of cytosolic free Ca2+, potentiates insulin release triggered by triose and mitochondrial fuels.  相似文献   

12.
Insulin secretion from the pancreatic beta cell line HIT-T15 was examined under conditions in which the elevation of intracellular free Ca2+ concentration ([Ca2+]i) was inhibited by nitrendipine or diazoxide or by severe Ca2+ deprivation. Glucose-induced insulin release was completely abolished under these conditions. However, in the presence of 12-O-tetradecanoyl-phorbol-13-acetate or forskolin, 10 mM glucose significantly enhanced insulin release, even in the presence of 5 microM nitrendipine or 150 microM diazoxide. The [Ca2+]i was not increased under these conditions. Even under Ca(2+)-deprived conditions, achieved by 60-min preincubation in Ca(2+)-free buffer containing 1 mM ethylene glycol bis-(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA), glucose in the complete absence of extracellular Ca2+ significantly enhanced insulin release when the cells were treated also with 12-O-tetradecanoylphorbol-13-acetate and forskolin. Because of these findings, additional studies were performed with pituitary adenylate cyclase-activating peptide (PACAP) and carbachol to see whether physiological stimulation via receptor activation could stimulate insulin release in the absence of a rise in [Ca2+]i. Under normal Ca(2+)-containing conditions, PACAP and carbachol stimulated insulin release and markedly potentiated glucose-stimulated release. In the presence of nitrendipine and thapsigargin, glucose failed to stimulate insulin release. Also, neither glucose in combination with PACAP nor glucose with carbachol was able to stimulate release. However, under the same conditions, the combination of glucose, PACAP, and carbachol did stimulate release while being unable to elevate [Ca2+]i. Thus, simultaneous activation of the beta cell by PACAP, carbachol, and glucose can stimulate insulin release even when [Ca2+]i is not elevated.  相似文献   

13.
In the present study we investigated the influence of several nonsteroidal anti-inflammatory drugs on calcium efflux in isolated rat renal cortex mitochondria in order to assess their potential to disrupt cell calcium homeostasis, as well as aspects of the mechanisms associated with oxidation of mitochondrial pyridine nucleotides (NAD(P)H) and with inhibition of the process by cyclosporin A (CsA). Calcium efflux was estimated with arsenazo III as an indicator and the redox state of NAD(P)H was monitored fluorimetrically at the 366/450 nm excitation/emission wavelength pair. Dipyrone, paracetamol and ibuprofen did not induce calcium efflux even at 1 mM, piroxicam and salicylate were poor inducers, while diclofenac sodium and mefenamic acid were potent inducers releasing calcium even at 20 microM and 10 microM, respectively. In the presence of 10 microM calcium, CsA had no appreciable effect while in the presence of 30 microM calcium it delayed calcium efflux. Oxidation of mitochondrial NAD(P)H, concomitant with calcium efflux and inhibited by CsA, was observed only in the presence of 30 microM calcium. The results suggest that diclofenac sodium and mefenamic acid induce calcium efflux in mitochondria through both a mechanism intrinsic to the mitochondrial membrane permeability transition and a mechanism including the electroneutral Ca2+/nH+ porter.  相似文献   

14.
By using the fluorescent calcium indicator fura-2, it was found that the concentration of free Ca2+ in the cytoplasm of Trypanosoma cruzi trypomastigotes incubated in the presence or absence of external calcium was maintained at very low levels (10-20 nM). When trypomastigotes were incubated in the presence of succinate and ATP and permeabilized with digitonin, they lowered the medium calcium concentration to a submicromolar level. In the presence of 1 microM FCCP the initial rate of Ca2+ sequestration by these permeabilized cells was very slow. When succinate alone was present, the initial rate of Ca2+ accumulation was slower than with ATP plus succinate, and the calcium set point was about 0.6 microM. The succinate dependence and FCCP sensitivity of the later Ca2+ uptake indicate that it may be exerted by the mitochondria. High concentrations of the tumor promoter thapsigargin slightly increased cytosolic Ca2+ in the presence of extracellular Ca2+ but had no effect on the FCCP- and oligomycin/antimycin A-insensitive Ca2+ pool. In addition, when used at those concentrations (4-20 microM), thapsigargin was shown to release Ca2+ from the mitochondria and to decrease the inner mitochondrial membrane potential of trypomastigotes and epimastigotes as measured using safranine O. Despite the presence of inositol phosphates as determined by [3H]inositol incorporation, no IP3-sensitive Ca2+ release could be detected in trypomastigotes.  相似文献   

15.
The effect of varying the Mg2+ concentration on the 2-oxoglutarate dehydrogenase (2-OGDH) activity and the rate of oxidative phosphorylation of rat heart mitochondria was studied. The ionophore A23187 was used to modify the mitochondrial free Mg2+ concentration. Half-maximal stimulation (K0.5) of ATP synthesis by Mg2+ was obtained with 0.13 +/- 0.02 mM (n = 7) with succinate (+rotenone) and 0.48 +/- 0.13 mM (n = 6) with 2-oxoglutarate (2-OG) as substrates. Similar K0.5 values were found for NAD(P)H formation, generation of membrane potential, and state 4 respiration with 2-OG. In the presence of ADP, an increase in Pi concentration promoted a decrease in the K0.5 values of ATP synthesis, membrane potential formation and state 4 respiration for Mg2+ with 2-OG, but not with succinate. These results indicate that 2-OGDH is the main step of oxidative phosphorylation modulated by Mg2+ when 2-OG is the oxidizable substrate; with succinate, the ATP synthase is the Mg2+-sensitive step. Replacement of Pi by acetate, which promotes changes on intramitochondrial pH abolished Mg2+ activation of 2-OGDH. Thus, the modulation of the 2-OGDH activity by Mg2+ has an essential requirement for Pi (and ADP) in intact mitochondria which is not associated to variations in matrix pH.  相似文献   

16.
The tumour promoting properties of carcinogenic 2-acetylaminofluorene (AAF) in rat liver are essentially unknown. We proposed that mitochondria are a target for the cytotoxic effects of 2-nitrosofluorene (NOF), a metabolite of AAF, since NOF induces a redox-cycle at complex I and complex III of the respiratory chain, and impairs respiration and oxidative phosphorylation. We now demonstrate that NOF is a potent inducer of the mitochondrial permeability transition pore (PTP) in isolated mitochondria. In the presence of Ca2+, NOF induced rapid swelling of mitochondria in a dose-dependent manner and depolarized the mitochondrial membrane. Permeability transition as well as depolarization were abolished completely by pre-incubation with the PTP inhibitor cyclosporin A. To study whether the PTP is involved in in vivo toxicity, rats were fed a diet containing AAF (0.04%) for 2 weeks. After isolation of mitochondria, permeability transition was induced by high Ca2+ concentrations (150-400 microM) or phosphate plus Ca2+. Swelling was determined as maximal rate of absorption decrease at 540 nm (delta A/delta t). Surprisingly, delta A/delta t-values of mitochondria from AAF-fed rats were significantly lower (16.3 +/- 4.8 x 10(3)/min) than of mitochondria from control animals (32.7 +/- 4.1 x 10(3)/min; P < 0.02). In the presence of phosphate (15 mM), delta A/delta t-values of mitochondria from AAF-fed rats were even lower (10% of control). Moreover, the membrane potential which was dissipated rapidly by the PTP-inducer NOF (30 microM) at a Ca2+ concentration of 80 microM in mitochondria from control animals, remained constant in mitochondria of AAF-treated rats. We therefore propose that the regulation of the PTP is altered on chronic AAF-feeding. The increased resistance of mitochondria against permeability transition may alter the threshold for apoptosis and thus suppress apoptosis. We also discuss the role of epigenetic modifications in early stages of carcinogenesis.  相似文献   

17.
The protective effects of Mg2+ and various natural and synthetic polyamines on the permeability transition of isolated rat liver mitochondria have been compared. The permeability transition was induced by incubating the mitochondria in a sucrose medium at pH 7.4 in the presence of 100 microM Ca2+ and 1 mM phosphate and was monitored via the release of endogenous Mg2+, sucrose permeation, mitochondria swelling and the fall of transmembrane potential. By all of these parameters (only the traces of delta psi have been reported) spermine fully inhibited the transition at 25 microM concentration, spermidine and caldine at 250 microM and Mg2+ at 500 microM concentration. Both putrescine and dien exhibited only a partial protection even at 2.5 mM concentration. The protective action resulted strictly dependent on the number of the positive charges of each cation. In the case of polyamines this number is also determined by the nature of the methylene carbon chains of each compound.  相似文献   

18.
The effect of Ca2+ channel-acting drugs on bovine adrenal mitochondria Ca2+ movements was investigated. Mitochondrial Ca2+ uptake is performed by an energy-driven Ca2+ uniporter with a Km of 20.9 +/- 3.2 microM and Vmax of 148.1 +/- 7.2 nmol 45Ca2+ min-1 mg-1. Ca2+ release is performed through an Na+/Ca2+ antiporter with a Km for Na+ of 4.2 +/- 0.5 mM, a Vmax of 7.5 +/- 0.4 nmol 45Ca2+ min-1 mg-1, and a Hill coefficient of 1.4 +/- 0.2 Ca2+ efflux through the mitochondrial Na+/Ca2+ exchanger was inhibited by several dihydropyridines (nitrendipine, felodipine, nimodipine, (+)isradipine) and by the benzothiazepine diltiazem with similar potencies. In contrast, neither CGP 28392, Bay-K-8644, amlodipine, nor verapamil had any effect on Ca2+ efflux. Nitrendipine at 20 microM modified neither the Km nor the Hill coefficient for Na+, whereas the Vmax was reduced to 2.9 nmol 45Ca2+ min-1 mg-1, thus demonstrating noncompetitive modulation of the Na+/Ca2+ exchanger. None of the Ca2+ channel-acting drugs assayed at 100 microM affected Ca2+ influx through the uniporter. Ca2+ channel blockers inhibited the Na+/Ca2+ antiporter and displaced the specific binding of [3H]nitrendipine to intact mitochondria with Ki values similar to the IC50s obtained for the inhibition of the Ca2+ efflux. Ca2+ channel-acting drugs that did not inhibit the Na+/Ca2+ exchanger (amlodipine, CGP 28392, Bay-K-9644, and verapamil, at concentrations of 100 microM or higher) had no effect on [3H]nitrendipine binding. These results suggest that the adrenomedullary mitochondrial dihydropyridine receptor is associated with the Na+/Ca2+ exchanger.  相似文献   

19.
Mitochondria contain a sophisticated system for transporting Ca2+. The existence of a uniporter and of both Na+-dependent and -independent efflux mechanisms has been known for years. Recently, a new mechanism, called the RaM, which seems adapted for sequestering Ca2+ from physiological transients or pulses has been discovered. The RaM shows a conductivity at the beginning of a Ca2+ pulse that is much higher than the conductivity of the uniporter. This conductivity decreases very rapidly following the increase in [Ca2+] outside the mitochondria. This decrease in the Ca2+ conductivity of the RaM is associated with binding of Ca2+ to an external regulatory site. When liver mitochondria are exposed to a sequence of pulses, uptake of labeled Ca2+ via the RaM appears additive between pulses. Ruthenium red inhibits the RaM in liver mitochondria but much larger amounts are required than for inhibition of the mitochondrial Ca2+ uniporter. Spermine, ATP and GTP increase Ca2+ uptake via the RaM. Maximum uptake via the RaM from a single Ca2+ pulse in the physiological range has been observed to be approximately 7 nmole/mg protein, suggesting that Ca2+ uptake via the RaM and uniporter from physiological pulses may be sufficient to activate the Ca2+-sensitive metabolic reactions in the mitochondrial matrix which increase the rate of ATP production. RaM-mediated Ca2+ uptake has also been observed in heart mitochondria. Evidence for Ca2+ uptake into the mitochondria in a variety of tissues described in the literature is reviewed for evidence of participation of the RaM in this uptake. Possible ways in which the differences in transport via the RaM and the uniporter may be used to differentiate between metabolic and apoptotic signaling are discussed.  相似文献   

20.
The mitochondrial permeability transition (PT) follows opening of megachannels in the inner membrane and may be part of a programmed death pathway. Recently a role for cytochrome c in programmed cell death has been proposed, although its relationship to PT has not been been determined. We studied the release of cytochrome c from liver mitochondria undergoing PT. Well-coupled mitochondria treated with 5 mM atractyloside (ATR) or 100 microM calcium chloride were found to undergo PT and release cytochrome c into the incubation buffer within 5 minutes. Control mitochondria and mitochondria treated with the uncoupler FCCP did not undergo PT or release cytochrome c at 5 or 15 minutes. PT induced by ATR could be prevented by pretreatment with 10 microM cyclosporin A. Mitochondria incubated with ATR or calcium caused a 20-30% decrease in electron transfer rate via cytochrome c and cytochrome c oxidase. We conclude that cytochrome c release is an early event during mitochondrial PT, and is sufficient to decrease electron transfer through the terminal electron transport components of the mitochondrion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号