首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent experiments on permeabilized anterior byssus retractor muscle (ABRM) of Mytilus edulis have shown that phosphorylation of twitchin releases catch force at pCa > 8 and decreases force at suprabasal but submaximum [Ca2+]. Twitchin phosphorylation decreases force with no detectable change in ATPase activity, and thus increases the energy cost of force maintenance at subsaturating [Ca2+]. Similarly, twitchin phosphorylation causes no change in unloaded shortening velocity (Vo) at any [Ca2+], but when compared at equal submaximum forces, there is a higher Vo when twitchin is phosphorylated. During calcium activation, the force-maintaining structure controlled by twitchin phosphorylation adjusts to a 30% Lo release to maintain force at the shorter length. The data suggest that during both catch and calcium-mediated submaximum contractions, twitchin phosphorylation removes a structure that maintains force with a very low ATPase, but which can slowly cycle during submaximum calcium activation. A quantitative cross-bridge model of catch is presented that is based on modifications of the Hai and Murphy (1988. Am. J. Physiol. 254:C99-C106) latch bridge model for regulation of mammalian smooth muscle.  相似文献   

2.
To address controversies concerning the effect of beta-adrenergic stimulation on the rate of cross-bridge cycling in cardiac muscle, we measured ca(2+)-induced isometric tension development, unloaded shortening velocity (Vmax) and ATPase activity of demembranated (Triton X-100 skinned) rat right ventricular trabeculae before and after treatment with the catalytic subunit of protein kinase A (PKA), which is known to mimic the action of beta-adrenergic agonists in demembranated preparations. PKA treatment (1 U/microliter, 40 min) shifted the pCa-tension relation to the right from 5.41 to 5.26 at pCa50 (the [Ca2+] required for half maximal steady state tension) without changing the steepness of the pCa-tension relation and the maximum Ca(2+)-activated tension; Vmax, as determined by the slack test, was increased for a given pCa value, despite the reduced level of isometric tension. PKA treatment also shifted the pCa-ATPase activity to the right slightly from 5.47 to 5.40 at pCa50 (the [Ca2+] required for half maximal ATPase activity), but increased the ATPase activity during a given level of steady isometric tension generation, resulting in a 33% increase of the tension cost (ATPase activity/tension). All the results obtained strongly suggest that, in rat right ventricular trabeculae, beta-adrenergic stimulation may increase the rate of cross-bridge cycling by increasing the rate of cross-bridge detachment from actin through a PKA-mediated mechanism, although PKA reduces the Ca(2+)-sensitivity of the contractile system.  相似文献   

3.
The dynamic characteristics of the low force myosin cross-bridges were determined in fully calcium-activated skinned rabbit psoas muscle fibers shortening under constant loads (0.04-0.7 x full isometric tension Po). The shortening was interrupted at various times by a ramp stretch (duration, 10 ms; amplitude, up to 1.8% fiber length) and the resulting tension response was recorded. Except for the earlier period of velocity transients, the tension response showed nonlinear dependence on stretch amplitude; i.e., the magnitude of the tension response started to rise disproportionately as the stretch exceeded a critical amplitude, as in the presence of inorganic phosphate (Pi). This result, as well as the result of stiffness measurement, suggests that the low force cross-bridges similar to those observed in the presence of Pi (presumably A.M.ADP.Pi) are significantly populated during shortening. The critical amplitude of the shortening fibers was greater than that of isometrically contracting fibers, suggesting that the low force cross-bridges are more negatively strained during shortening. As the load was reduced from 0.3 to 0.04 P0, the shortening velocity increased more than twofold, but the amount of the negative strain stayed remarkably constant (approximately 3 nm). This This insensitiveness of the negative strain to velocity is best explained if the dissociation of the low force cross-bridges is accelerated approximately in proportion to velocity. Along with previous reports, the results suggest that the actomyosin ATPase cycle in muscle fibers has at least two key reaction steps in which rate constants are sensitively regulated by shortening velocity and that one of them is the dissociation of the low force A.M.ADP.Pi cross-bridges. This step may virtually limit the rate of actomyosin ATPase turnover and help increase efficiency in fibers shortening at high velocities.  相似文献   

4.
Spontaneous Action Potential Current waveforms (APCs) and single ion channel openings were recorded in cultured rat cerebellar granule cells using the cell-attached configuration of the patch-clamp technique. APCs were activated without any externally applied stimuli. Both mono- and biphasic APCs were detected with a typical amplitude (positive waveform component) of 25-60 pA. Correlation between cell APCs and inward and outward single ion channel openings immediately before and after the capacitive transients was analyzed. In a detailed analysis it was found that the opening of 1.5 pA inward channel before the waveform was associated with 16%, and the opening of 1.0 pA outward channel after the waveform with 88% of APCs (of total 327 APCs analyzed). The modulation of APC activity by bath application of the amino acid taurine was found to increase the frequency of APCs, transform the APCs from mixed monophasic/biphasic to completely biphasic, and enhance the activated inward current deflections seemingly connected to the increased firing frequency.  相似文献   

5.
The most popular theory to account for the regulation of the contractile activity of smooth muscle, at the contractile protein level, is based on the phosphorylation and dephosphorylation of the myosin molecule. The enzymes involved are a myosin light chain kinase and a phosphatase, respectively. In this communication a method is given for the purification of the kinase. Using the purified kinase in combination with calmodulin, the pH dependence and rates of P transfer were examined. An Arrhenius plot of phosphorylation rates indicated that Q10 is approximately 2. The rates of P transfer to myosin light chains at 25 C and 37 C were about 15 and 34 mumol.min-1.mg-1 kinase, respectively. It is shown also that the rate of phosphorylation of isolated myosin light chains is significantly faster than the rate obtained when whole myosin is used as the phosphate acceptor, the latter being at least an order of magnitude slower. This difference in rates was not due entirely to the difference in physical states of the two substrates since at an increased ionic strength, where myosin was soluble, the rate of phosphorylation of the light chain fraction was still considerably faster than the rate of phosphorylation of whole myosin.  相似文献   

6.
Methods are described for isolating smooth muscle cells from the tracheae of adult and neonatal sheep and measuring the single-cell shortening velocity. Isolated cells were elongated, Ca2+ tolerant, and contracted rapidly and substantially when exposed to cholinergic agonists, KCl, serotonin, or caffeine. Adult cells were longer and wider than preterm cells. Mean cell length in 1.6 mM CaCl2 was 194 +/- 57 (SD) microm (n = 66) for adult cells and 93 +/- 32 microm (n = 20) for preterm cells (P < 0.05). Mean cell width at the widest point of the adult cells was 8.2 +/- 1.8 microm (n = 66) and 5.2 +/- 1.5 microm (n = 20) for preterm cells (P < 0.05). Cells were loaded into a perfusion dish maintained at 35 degreesC and exposed to agonists, and contractions were videotaped. Cell lengths were measured from 30 video frames and plotted as a function of time. Nonlinear fitting of cell length to an exponential model gave shortening velocities faster than most of those reported for airway smooth muscle tissues. For a sample of 10 adult and 10 preterm cells stimulated with 100 microM carbachol, mean (+/- SD) shortening velocity of the preterm cells was not different from that of the adult cells (0.64 +/- 0.30 vs. 0.54 +/- 0.27 s-1, respectively), but preterm cells shortened more than adult cells (68 +/- 12 vs. 55 +/- 11% of starting length, respectively; P < 0.05). The preparative and analytic methods described here are widely applicable to other smooth muscles and will allow contraction to be studied quantitatively at the single-cell level.  相似文献   

7.
Effects on isometric tension generation and maximum velocity of unloaded shortening after exposure to cAMP-dependent protein kinase (PKA) were investigated in rat enzymatically isolated, tritonized ventricular myocytes. Exposure of myocytes to PKA in the presence of [32P]ATP resulted in phosphorylation of troponin I and C protein. Ca2+ sensitivity of isometric tension was assessed as pCa50, ie, the [Ca2+] at which tension was 50% of maximum, and was lower after PKA treatment (pCa50 5.58) than before PKA treatment (pCa50 5.74). This suggests beta-adrenergic stimulation of the heart and subsequent increases in PKA activity and phosphorylation of troponin I and C protein lead to a significant decrease in tension-generating ability at a given submaximum [Ca2+]. Unloaded shortening velocity was determined by measuring the time required to take up various amounts of slack imposed at one end of the cardiac myocyte preparation. Unloaded shortening velocity during maximum activation was 2.88 +/- 0.11 muscle lengths per second (mean +/- SEM) before PKA exposure and 2.86 +/- 0.13 muscle lengths per second after PKA exposure. Unloaded shortening velocity during 40% of maximum activation was 1.91 +/- 0.25 muscle lengths per second before PKA exposure and 2.17 +/- 0.15 muscle lengths per second after PKA exposure. The absence of an effect of PKA on unloaded shortening velocity in skinned ventricular myocytes suggests that beta-adrenergic stimulation of myocardium either does not affect myofilament velocity of shortening or alters velocity of shortening by a non-PKA-dependent process.  相似文献   

8.
Calponin is a thin filament-associated protein in smooth muscle that has been shown to bind actin, tropomyosin and calmodulin, and has been implicated to play a role in regulation of smooth muscle contractility. Using a centrifugation assay we found that calponin interacts with unphosphorylated filamentous smooth muscle myosin. We found that this calponin-myosin interaction is reversed by Ca(2+)-CaM, and depends on ionic strength. At 50 mM NaCl the binding constant and the stoichiometry of this interaction were estimated to be 2 x 10(6) M-1, and 1.2-2.4 calponin per myosin, respectively. We suggest that the calponin-myosin interaction could be involved in regulation of smooth muscle contractility by anchoring myosin to actin.  相似文献   

9.
By using synchrotron radiation and an imaging plate for recording diffraction patterns, we have obtained high-resolution x-ray patterns from relaxed rabbit psoas muscle at temperatures ranging from 1 degree C to 30 degrees C. This allowed us to obtain intensity profiles of the first six myosin layer lines and apply a model-building approach for structural analysis. At temperatures 20 degrees C and higher, the layer lines are sharp with clearly defined maxima. Modeling based on the data obtained at 20 degrees C reveals that the average center of the cross-bridges is at 135 A from the center of the thick filament and both of the myosin heads appear to wrap around the backbone. At 10 degrees C and lower, the layer lines become very weak and diffuse scattering increases considerably. At 4 degrees C, the peak of the first layer line shifts toward the meridian from 0.0047 to 0.0038 A(-1) and decreases in intensity approximately by a factor of four compared to that at 20 degrees C, although the intensities of higher-order layer lines remain approximately 10-15% of the first layer line. Our modeling suggests that as the temperature is lowered from 20 degrees C to 4 degrees C the center of cross-bridges extends radially away from the center of the filament (135 A to 175 A). Furthermore, the fraction of helically ordered cross-bridges decreases at least by a factor of two, while the isotropic disorder (the temperature factor) remains approximately unchanged. Our results on the order/disordering effects of temperature are in general agreement with earlier results of Wray [Wray, J. 1987. Structure of relaxed myosin filaments in relation to nucleotide state in vertebrate skeletal muscle. J. Muscle Res. Cell Motil. 8:62a (Abstr.)] and Lowy et al. (Lowy, J., D. Popp, and A. A. Stewart. 1991. X-ray studies of order-disorder transitions in the myosin heads of skinned rabbit psoas muscles. Biophys. J. 60:812-824). and support Poulsen and Lowy's hypothesis of coexistence of ordered and disordered cross-bridge populations in muscle (Poulsen, F. R., and J. Lowy. 1983. Small angle scattering from myosin heads in relaxed and rigor frog skeletal muscle. Nature (Lond.). 303:146-152.). However, our results added new insights into the disordered population. Present modeling together with data analysis (Xu, S., S. Malinchik, Th. Kraft, B. Brenner, and L. C. Yu. 1997. X-ray diffraction studies of cross-bridges weakly bound to actin in relaxed skinned fibers of rabbit psoas muscle. Biophys. J. 73:000-000) indicate that in a relaxed muscle, cross-bridges are distributed in three populations: those that are ordered on the thick filament helix and those that are disordered; and within the disordered population, some cross-bridges are detached and some are weakly attached to actin. One critical conclusion of the present study is that the apparent order <--> disorder transition as a function of temperature is not due to an increase/decrease in thermal motion (temperature factor) for the entire population, but a redistribution of cross-bridges among the three populations. Changing the temperature leads to a change in the fraction of cross-bridges located on the helix, while changing the ionic strength at a given temperature affects the disordered population leading to a change in the relative fraction of cross-bridges detached from and weakly attached to actin. Since the redistribution is reversible, we suggest that there is an equilibrium among the three populations of cross-bridges.  相似文献   

10.
11.
"Catch" is a condition of prolonged, high-force maintenance at resting intracellular Ca2+ concentration ([Ca2+]) and very low energy usage, occurring in invertebrate smooth muscles, including the anterior byssus retractor muscle (ABRM) of Mytilus edulis. Relaxation from catch is rapid on serotonergic nerve stimulation in intact muscles and application of cAMP in permeabilized muscles. This release of catch occurs by protein kinase A-mediated phosphorylation of a high (approximately 600 kDa) molecular mass protein, the regulator of catch. Here, we identify the catch-regulating protein as a homologue of the mini-titin, twitchin, based on (i) a partial cDNA of the purified isolated protein showing 77% amino acid sequence identity to the kinase domain of Aplysia californica twitchin; (ii) a polyclonal antibody to a synthetic peptide in this sequence reacting with the phosphorylated catch-regulating protein band from permeabilized ABRM; and (iii) the similarity of the amino acid composition and molecular weight of the protein to twitchin. In permeabilized ABRM, at all but maximum [Ca2+], phosphorylation of twitchin results in a decreased calcium sensitivity of force production (half-maximum at 2.5 vs. 1.3 microM calcium). At a given submaximal force, with equal numbers of force generators, twitchin phosphorylation increased unloaded shortening velocity approximately 2-fold. These data suggest that aspects of the catch state exist not only at resting [Ca2+], but also at higher submaximal [Ca2+]. The mechanism that gives rise to force maintenance in catch probably operates together, to some extent, with that of cycling myosin crossbridges.  相似文献   

12.
13.
Increasing evidence suggests that cytokines such as interleukin-1beta (IL-1), IL-4, and IL-8 may play an important role in the chronic inflammation and cellular growth observed in cardiovascular diseases. The lipoxygenase (LO) pathway of arachidonate metabolism has also been related to the pathology of hypertension and atherosclerosis. LO products have chemotactic, hypertrophic, and mitogenic effects in vascular cells, and the LO enzyme has been implicated in the oxidation of LDL. Furthermore, earlier studies have shown that vascular smooth muscle cell (VSMC) growth factors such as angiotensin II and platelet-derived growth factor can increase LO activity and expression in VSMCs. In the present study, we have examined whether vasoactive and inflammatory cytokines such as IL-1, IL-4, and IL-8 can modulate 12-LO activity and expression in porcine VSMCs and also whether they have growth-promoting effects in these cells. Treatment of porcine VSMCs with these cytokines led to significant increases in the levels of a cell-associated 12-LO product, 12-hydroxyeicosatetraenoic acid, as well as intracellular 12-LO enzyme activity. Furthermore, each of these cytokines led to a dose-dependent increase in 12-LO mRNA expression (333-base pair PCR product) as well as 12-LO protein expression (72 kD). In addition, all three interleukins could induce significant increases in VSMC DNA synthesis as well as proliferation. These results suggest that these cytokines have mitogenic effects in VSMCs and are also potent positive regulators of the 12-LO pathway. Thus, enhanced 12-LO activity and expression may be a key mechanism for cytokine-induced VSMC migration and proliferation.  相似文献   

14.
BACKGROUND: Halothane directly relaxes airway smooth muscle partly by decreasing the Ca2+ sensitivity. In smooth muscle, receptor stimulation is thought to increase Ca2+ sensitivity via a cascade of heterotrimeric and small monomeric guanine nucleotide-binding proteins (G-proteins). Whether this model is applicable in the airway and where halothane acts in this pathway were investigated. METHODS: A beta-escin-permeabilized canine tracheal smooth muscle preparation was used. Exoenzyme C3 of Clostridium botulinum, which inactivates Rho monomeric G-proteins, was used to evaluate the involvement of this protein in the Ca2+ sensitization pathway. The effects of halothane on different stimulants acting at different levels of signal transduction were compared: acetylcholine on the muscarinic receptor, aluminum fluoride (AIF4-) on heterotrimeric G-proteins, and guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS) on all G-proteins. RESULTS: Exoenzyme C3 equally attenuated acetylcholine- and AIF4--induced Ca2+ sensitization, suggesting that these pathways are both mediated by Rho. Halothane applied before stimulation equally attenuated acetylcholine- and AIF4--induced Ca2+ sensitization. However, when added after Ca2+ sensitization was established, the effect of halothane was greater during Ca2+ sensitization induced by acetylcholine compared with AIF4-, which, along with the previous result, suggests that halothane may interfere with dissociation of heterotrimeric G-proteins. Halothane applied during GTPgammaS-induced Ca2+ sensitization had no significant effect on force, suggesting that halothane has no effect downstream from monomeric G-proteins. CONCLUSION: Halothane inhibits increases in Ca2+ sensitivity of canine tracheal smooth muscle primarily by interfering with the activation of heterotrimeric G-proteins, probably by inhibiting their dissociation.  相似文献   

15.
To investigate the role of myosin light chain kinase (MLCK) in phasic contractions of intact smooth muscle, we have applied Wortmannin, an MLCK inhibitor, to strips of guinea-pig ureter. Simultaneous measurements of electrical activity, intracellular [Ca2+] ([Ca2+]i) and phasic force showed that Wortmannin (1-4 microM) abolishes force with little or no change in [Ca2+]i and electrical activity. High-K+-induced force production was also abolished by Wortmannin. The effects of Wortmannin were dose dependent - at lower concentrations (100 nM) Wortmannin reduced phasic contractility by 40-50%. It also significantly increased the delay between the Ca2+ peak and force production. These data show that, in phasic smooth muscle, inhibition of MLCK causes contraction to fail, despite normal electrical activity and Ca2+ transients. Our results also indicate that Wortmannin has no secondary effects and that other means of producing force, independent of myosin phosphorylation, are negligible in this tissue. The increased lag between the rise of Ca2+ and force production when MLCK is inhibited was surprising and suggests that post-phosphorylation steps may play a larger role in the delay than was previously considered.  相似文献   

16.
17.
It has previously been suggested that paradigms investigating schema theory should include tests of the effects of variability of practice on tasks experienced during the acquisition of learning. The present aim was to test this effect using a sports-related task. Two groups of children (n = 13 each) aged between 3 and 5 yr. old were pretested on an aiming task. They then received ten practice trials per day for ten days. One group (designated the specific group) practised only at the specified target distance, while another group (designated the specific plus variable group) practised at the target distance and at distances around the target. At the end of the practice period both groups were again tested. The data were analysed for distance and lateral errors, using two-way (group x time) analyses of covariance with one repeated measure on the latter factor. The interaction of groups x time was significant for the distance errors, indicating that at the end of the practice period the specific plus variable group had improved more than the specific group. This finding extends previous work on a similar variability paradigm to a sports-related setting.  相似文献   

18.
19.
Increasingly it is recognized that tyrosine phosphorylation plays an important part in the regulation of function in differentiated contractile vascular smooth muscle. Tyrosine kinases and phosphatases are present in large amounts in vascular smooth muscle and have been reported to influence a number of processes crucial to contraction, including ion channel gating, calcium homeostasis and sensitization of the contractile process to [Ca2+]i. This review summarizes current understanding regarding the role of tyrosine phosphorylation in excitation-contraction coupling in blood vessels.  相似文献   

20.
ATP, 2-deoxy ATP (dATP), CTP, and UTP support isometric force and unloaded shortening velocity (Vu) to various extents (Regnier et al., Biophys. J. 74:3044-3058). Vu correlated with the rate of cross-bridge dissociation after the power stroke and the steady-state hydrolysis rate in solution, whereas force was modulated by NTP binding and cleavage. Here we studied the influence of posthydrolytic cross-bridge steps on force and fiber shortening by measuring isometric force and stiffness, the rate of tension decline (kPi) after Pi photogeneration from caged Pi, and the rate of tension redevelopment (ktr) after a sudden release and restretch of fibers. The slope of the force versus [Pi] relationship was the same for ATP, dATP, and CTP, but for UTP it was threefold less. ktr and kPi increased with increasing [Pi] with a similar slope for ATP, dATP, and CTP, but had an increasing magnitude of the relationship ATP < dATP < CTP. UTP reduced ktr but increased kPi. The results suggest that the rate constant for the force-generating isomerization increases with the order ATP < dATP < CTP < UTP. Simulations using a six-state model suggest that increasing the force-generating rate accounts for the faster kPi in dATP, CTP, and UTP. In contrast, ktr appears to be strongly affected by the rates of NTP binding and cleavage and the rate of the force-generating isomerization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号