首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The coupling of upconversion nanophosphors (UCNPs) with the surface plasmonic resonance (SPR) of noble metals is a promising way to improve luminescent efficiency of UCNPs; however, it is still a challenge to achieve stable, reproducible and effective upconversion luminescence (UCL) enhancement through such coupling. In this work, we present a novel strategy to improve UCL of NaYF4:ybB,Er3. UCNPs, by combining the near-field coupling of SPR of silver and the far-field coupling of poly(methyl methacrylate) (PMMA) opal photonic crystals (OPCs) with the UCNPs. In order to control the effective interaction distance between the UCNPs and the SPR, a porous silver film consisting of randomly distributed silver nanoparticles (NPs) (〉 100 nm) was prepared which demonstrated strong SPR over a broad wavelength range, and its coupling to the UCNPs was found to be much stronger than that of a dense film. In the far-field coupling of OPCs, the photonic stop band (PSB) of the PMMA OPCs was tuned to 980 nm, matching exactly the excitation light. By modulating the particle size of the UCNPs, and the direction and excitation power of the incident light, a maximum enhancement of 60-fold was observed, which is an important advance for metaMnduced UCL enhancement systems.  相似文献   

2.
Detection of circulating tumor cells (CTCs) plays an important role in cancer diagnosis and prognosis. In this study, aptamer-conjugated upconversion nano- particles (UCNPs) are used for the first time as nanoprobes to recognize tumor cells, which are then enriched by attaching with magnetic nanoparticles (MNPs) and placing in the presence of a magnetic field. Owing to the autofluorescence- free nature of upconversion luminescence imaging, as well as the use of magnetic separation to further reduce background signals, our technique allows for highly sensitive detection and collection of small numbers of tumor cells spiked into healthy blood samples, and shows promise for CTC detection in medical diagnostics.  相似文献   

3.
We present the optical up-conversion (UC) study for Yb3?+?–Ho3?+? co-doped Na(Y1·5Na0·5)F6 nanorods synthesized by employing a facile hydrothermal method. Numbers of Ho3?+? ion up-conversion emissions have been observed under 980 nm infrared diode laser excitation. Three UC emissions of interest, ultraviolet, violet and blue, are specially identified at 359, 387, 418 and 483 nm, corresponding to $^{5}{{G}}^{\prime}_{5}{/}^{3}\!{{H}}_{ 6}\to\ ^{ 5}\!{ {I}}_{ 8}$ , $^{ 5}\!{ {G}}_{ 4}{/}^{ 3}\!{ {K}}_{ 7}\to\ ^{ 5}\!{ {I}}_{ 8}$ , $^{ 5}{ {G}}_{ 5}\to$ $^{ 5}\!{ {I}}_{ 8}$ and $^{ 5}\!{ {F}}_{ 3}{/}^{ 5}\!{ {F}}_{ 2}{/}^{ 3}\!{ {K}}_{ 8}\to {}^{ 5}\!{ {I}}_{ 8}$ transitions, respectively. It is also found that the centre wavelength of blue UC emission shifts to 475 nm gradually as Ho3?+? concentration decreases. Lastly, a brief analysis about UC mechanism is demonstrated according to the experimental results.  相似文献   

4.
Aiming to enhance the luminescence yield of carbon nanotubes, we introduce a new class of hybrid nanoplasmonic colloidal systems (π-hybrids). Nanotubes dispersed in gold nanorod colloidal suspensions yield hybrid structures exhibiting enhanced luminescence up to a factor of 20. The novelty of the proposed enhancement mechanism relies on including metal proximity effects in addition to its localized surface plasmons. This simple, robust and flexible technique enhances the luminescence of nanotubes with chiralities whose enhancement has never reported before, for example the (8,4) tube.  相似文献   

5.
In situ low-voltage aberration corrected transmission electron microscopy (TEM) observations of the dynamic entrapment of a C60 molecule in the saddle of a bent double-walled carbon nanotube is presented. The fullerene interaction is non-covalent, suggesting that enhanced π-π interactions (van der Waals forces) are responsible. Classical molecular dynamics calculations confirm that the increased interaction area associated with a buckle is sufficient to trap a fullerene. Moreover, they show hopping behavior in agreement with our experimental observations. Our findings further our understanding of carbon nanostructure interactions, which are important in the rapidly developing field of low-voltage aberration corrected TEM and nano-carbon device fabrication.   相似文献   

6.
Anodic particle coulometry (APC) is a recently established method of sizing individual metal nanoparticles by oxidising them during their impact on a micro electrode. Here it is demonstrated that the application of APC can be extended to sizing of metal oxide nanoparticles, such as Fe304 magnetite nanoparticles. Additionally, a new route to electrochemical nanoparticle sizing is introduced-- cathodic particle coulometry (CPC). This method uses the reduction of impacting nanoparticles, e.g., metal oxide nanoparticles, and is demonstrated to yield correct size information for Fe304 nanoparticles. The combination of these two independent electrochemical methods of nanoparticle sizing, allows for purely electrochemical sizing of single nanoparticles and simultaneous verification of the obtained results.  相似文献   

7.
The accurate detection of blood glucose is of critical importance in the diagnosis and management of diabetes and its complications. Herein, we report a novel strategy based on an upconversion nanoparticles-polydopamine (UCNPs-PDA) nanosystem for the accurate detection of glucose in human serum and whole blood through a simple blending of test samples with ligand-free UCNPs, dopamine, and glucose oxidase (GOx). Owing to the high affinity of lanthanide ions exposed on the surface of ligand-free UCNPs, dopamine monomers could spontaneously attach to the UCNPs and further polymerize to form a PDA shell, resulting in a remarkable upconversion luminescence (UCL) quenching (97.4%) of UCNPs under 980-nm excitation. Such UCL quenching can be effectively inhibited by H2O2 produced from the GOx/glucose enzymatic reaction, thus enabling the detection of H2O2 or glucose based on the UCL quenching/inhibition bioassay. Owing to the highly sensitive UCL response and background-free interference of the UCNPs-PDA nanosystem, we achieved a sensitive, selective, and high-throughput bioassay for glucose in human serum and whole blood, thereby revealing the great potential of the UCNPs-PDA nanosystem for the accurate detection of blood glucose or other H2O2-generated biomolecules in clinical bioassays.
  相似文献   

8.
Since the high-voltage spinel LiNi0.5Mn1504 (LNMO) is one of the most attractive cathode materials for lithium-ion batteries, how to improve the cycling and rate performance simultaneously has become a critical question. Nanosizing is a typical strategy to achieve high rate capability due to drastically shortened Li- ion diffusion distances. However, the high surface area of nanosized particles increases the side reaction with the electrolyte, which leads to poor cycling performance. Spinels with disordered structures could also lead to improved rate capability, but the cyclability is low due to the presence of Mn3+ ions. Herein, we systematically investigated the synergic interaction between particle size and cation ordering. Our results indicated that a microsized disordered phase and a nanosized ordered phase of LNMO materials exhibited the best combination of high rate capability and cycling performance.  相似文献   

9.
Monodisperse Ni/Pd core/shell nanoparticles (NPs) have been synthesized by sequential reduction of nickel(II) acetate and palladium(II) bromide in oleylamine (OAm) and trioctylphosphine (TOP). The Ni/Pd NPs have a narrow size distribution with a mean particle size of 10 nm and a standard deviation of 5% with respect to the particle diameter. Mechanistic studies showed that the presence of TOP was essential to control the reductive decomposition of Ni-TOP and Pd-TOP, and the formation of Ni/Pd core/shell NPs. Using the current synthetic protocol, the composition of the Ni/Pd within the core/shell structure can be readily tuned by simply controlling the initial molar ratio of the Ni and Pd salts. The as-synthesized Ni/Pd core/shell NPs were supported on graphene (G) and used as catalyst in Suzuki-Miyaura cross-coupling reactions. Among three different kinds of Ni/Pd NPs tested, the Ni/Pd (Ni/Pd = 3/2) NPs were found to be the most active catalyst for the Suzuki-Miyaura cross-coupling of arylboronic acids with aryl iodides, bromides and even chlorides in a dimethylformamide/water mixture by using K2CO3 as a base at 110 °C. The G-Ni/Pd was also stable and reusable, providing 98% conversion after the 5th catalytic run without showing any noticeable Ni/Pd composition change. The G-Ni/Pd structure reported in this paper combines both the efficiency of a homogeneous catalyst and the durability of a heterogeneous catalyst, and is promising catalyst candidate for various Pd-based catalytic applications.   相似文献   

10.
Rattle structure is a topic of great interest in design and application of nanomaterials due to the unique core@void@shell architecture and the integration of functions. Herein, we developed a novel “ship-in-a-bottle” method to fabricate upconverting (UC) luminescent nanorattles by incorporating lanthanide-doped fluorides into hollow mesoporous silica. The size of nanorattles and the filling amount of fluorides can be well controlled. In addition, the modification of silica shell (with phenylene and amine groups) and the variation of efficient UC fluorides (NaYF4:Yb,Er, NaLuF4:Yb,Er, NaGdF4:Yb,Er and LiYF4:Yb,Er) were readily achieved. The resulting nanorattles exhibited a high capacity and pH-dependent release of the anti-cancer drug doxorubicin (DOX). Furthermore, we employed these nanorattles in proof-of-concept UC-monitoring drug release by utilizing the energy transfer process from UC fluorides to DOX, thus revealing the great potential of the nanorattles as efficient cancer theranostic agent.
  相似文献   

11.
WS2 nanotubes have been filled and intercalated by molten phase caesium iodide. The presence of caesium iodide inside the WS2 nanotubes has been determined using high-resolution transmission electron microscopy (HRTEM) coupled with electron energy-loss spectroscopy (EELS) and energy-dispersive X-ray spectroscopy (EDS). Noticeably, a Moiré pattern was observed due to the interference between encapsulated CsI and WS2 layers. The intercalation of CsI into the host concentric WS2 lattices resulted in an increase in the interplanar spacing.   相似文献   

12.
This paper presents a systematic study of the growth mechanism for Pd nanobars synthesized by reducing Na2PdCl4 with L-ascorbic acid in an aqueous solution in the presence of bromide ions as a capping agent. Transmission electron microscopy (TEM) and high-resolution TEM analyses revealed that the growth at early stages of the synthesis was dominated by particle coalescence, followed by shape focusing via recrystallization and further growth via atomic addition. We also investigated the detailed surface structure of the nanobars using aberration-corrected scanning TEM and found that the exposed {100} surfaces contained several types of defects such as an adatom island, a vacancy pit, and atomic steps. Upon thermal annealing, the nanobars evolved into a more thermodynamically favored shape with enhanced truncation at the corners.   相似文献   

13.
Lithium iron phosphate (LiFePO4) is a potential high efficiency cathode material for lithium ion batteries, but the low electronic conductivity and single diffusion channel for lithium ions require good particle size and shape control during the synthesis of this material. In this paper, six LiFePO4 nanocrystals with different size and shape have been successfully synthesized in ethylene glycol. The addition sequence Fe-PO4-Li helps to form LiFePO4 nanocrystals with mostly {010} faces exposed, and increasing the amount of LiOH leads to a decrease in particle size. The electrochemical performance of the six distinct LiFePO4 particles show that the most promising LiFePO4 nanocrystals either have predominant {010} face exposure or high specific area, with little iron(II) oxidation.   相似文献   

14.
Pb nanobridges with a thickness of less than 10 nm and a width of several hundred nm have been fabricated from single-crystalline Pb films using low-temperature molecular beam epitaxy and focus ion beam microfabrication techniques. We observed novel magnetoresistance oscillations below the superconducting transition temperature (T C ) of the bridges. The oscillations—which were not seen in the crystalline Pb films—may originate from the inhomogeneity of superconductivity induced by the applied magnetic fields on approaching the normal state, or the degradation of film quality by thermal evolution.   相似文献   

15.
This perspective provides an overview of the techniques that have been developed for the conjugation of DNA to colloidal quantum dots (QDs), or semiconductor nanocrystals. Methods described include: ligand exchange at the QD surface, covalent conjugation of DNA to the QD surface ligands, and one-step DNA functionalization on core QDs or during core/shell QD synthesis in aqueous solution, with an emphasis on the most recent progress in our lab. We will also discuss emerging trends in DNA-functionalized QDs for potential applications.   相似文献   

16.
We study molybdenum disulfide (MoS2) structures generated by folding single-layer and bilayer MoS2 flakes. We find that this modified layer stacking leads to a decrease in the interlayer coupling and an enhancement of the photoluminescence emission yield. We additionally find that folded single-layer MoS2 structures show a contribution to photoluminescence spectra of both neutral and charged excitons, which is a characteristic feature of single-layer MoS2 that has not been observed in multilayer MoS2. The results presented here open the door to fabrication of multilayered MoS2 samples with high optical absorption while maintaining the advantageous enhanced photoluminescence emission of single-layer MoS2 by controllably twisting the MoS2 layers.  相似文献   

17.
To improve the contact between platinum catalyst and titanium substrate, a layer of TiO2 nanotube arrays has been synthesized before depositing Pt nanoflowers by pulse electrodeposition. Dramatic improvements in electrocatalytic activity (3x) and stability (60x) for methanol oxidation were found, suggesting promising applications in direct methanol fuel cells. The 3x and 60x improvements persist for Pt/Pd catalysts used to overcome the CO poisoning problem.  相似文献   

18.
We have demonstrated the improved performance of oxygen evolution reactions (OER) using Au/nickel phosphide (Ni12P5) core/shell nanoparticles (NPs) under basic conditions. NPs with a Ni12P5 shell and a Au core, both of which have well-defined crystal structures, have been prepared using solution-based synthetic routes. Compared with pure Ni12P5 NPs and Au-Ni12P5 oligomer-like NPs, the core/shell crystalline structure with Au shows an improved OER activity. It affords a current density of 10 mA/cm2 at a small overpotential of 0.34 V, in 1 M KOH aqueous solution at room temperature. This enhanced OER activity may relate to the strong structural and effective electronic coupling between the single-crystal core and the shell.
  相似文献   

19.
GaN nanowires have been grown by molecular beam epitaxy either catalyst-free or catalyst-induced by means of Ni seeds. Under identical growth conditions of temperature and V/III ratio, both types of GaN nanowires are of wurtzite structure elongated in the Ga-polar direction and are constricted by M-plane facets. However, the catalyst-induced nanowires contain many more basal-plane stacking faults and their photoluminescence is weaker. These differences can be explained as effects of the catalyst Ni seeds.   相似文献   

20.
The dynamic behavior of octahedral gold nanoparticles (NPs) and nanoparticle clusters (NPCs) in aqueous solution is studied by in-situ liquid-cell transmission electron microscopy (TEM). The octahedral Au NPs/NPCs show preferential orientations in the liquid cell, due to the interaction with the SiNx window. The Au NPs show long-range reversible hopping and three-dimensional (3D) rotational motions in the liquid environment. At the same time, the Au NPCs and NPs perform slow stick-slip and stick-roll motions, respectively, with a centripetal trend. The centripetal motions were explained by a liquid evaporation-induced radial flow model, in which the NPCs/NPs trajectories are controlled by Stokes forces and surface friction by the silicon nitride window. The calculated radius-dependent force (Fc) on the NPCs/NPs shows a semi-linear correlation with the distance r between the NPCs/NPs and the center of mass, accompanied with stochastic fluctuations, in agreement with the model predictions. This work thus demonstrates the effectiveness of in situ liquid-cell TEM for the in-depth understanding of complicated liquid flow and force interactions in nanomaterials.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号