共查询到20条相似文献,搜索用时 10 毫秒
1.
Single-Image Super-Resolution Reconstruction via Learned Geometric Dictionaries and Clustered Sparse Coding 总被引:7,自引:0,他引:7
Recently, single image super-resolution reconstruction (SISR) via sparse coding has attracted increasing interest. In this paper, we proposed a multiple-geometric-dictionaries-based clustered sparse coding scheme for SISR. Firstly, a large number of high-resolution (HR) image patches are randomly extracted from a set of example training images and clustered into several groups of "geometric patches," from which the corresponding "geometric dictionaries" are learned to further sparsely code each local patch in a low-resolution image. A clustering aggregation is performed on the HR patches recovered by different dictionaries, followed by a subsequent patch aggregation to estimate the HR image. Considering that there are often many repetitive image structures in an image, we add a self-similarity constraint on the recovered image in patch aggregation to reveal new features and details. Finally, the HR residual image is estimated by the proposed recovery method and compensated to better preserve the subtle details of the images. Some experiments test the proposed method on natural images, and the results show that the proposed method outperforms its counterparts in both visual fidelity and numerical measures. 相似文献
2.
3.
Practical face recognition systems are sometimes confronted with low-resolution face images. Traditional two-step methods solve this problem through employing super-resolution (SR). However, these methods usually have limited performance because the target of SR is not absolutely consistent with that of face recognition. Moreover, time-consuming sophisticated SR algorithms are not suitable for real-time applications. To avoid these limitations, we propose a novel approach for LR face recognition without any SR preprocessing. Our method based on coupled mappings (CMs), projects the face images with different resolutions into a unified feature space which favors the task of classification. These CMs are learned through optimizing the objective function to minimize the difference between the correspondences (i.e., low-resolution image and its high-resolution counterpart). Inspired by locality preserving methods for dimensionality reduction, we introduce a penalty weighting matrix into our objective function. Our method significantly improves the recognition performance. Finally, we conduct experiments on publicly available databases to verify the efficacy of our algorithm. 相似文献
4.
摘 要 稀疏编码(SRC)是一种用于人脸识别的方法。该方法把检测图像表示为一组训练样本的稀疏线性组合,表示的准确性通过L2或L1残余项来衡量。此模型假定编码残余项服从高斯分布或拉普拉斯分布,实际上却不能很准确的描述编码错误率。本文提出一种新的稀疏编码方法,建立一种有约束的回归问题模型。最大似然稀疏编码(MSC)寻找此模型的最大似然估计参数,对异常情况具有很强的鲁棒性。在Yale及ORL人脸数据库的实验结果表明了该方法对于人脸模糊、光照及表情变化等的有效性及鲁棒性。 相似文献
5.
6.
Can-Yi Lu Hai Min Jie Gui Lin Zhu Ying-Ke Lei 《Journal of Visual Communication and Image Representation》2013,24(2):111-116
Face recognition using Sparse Representation based Classification (SRC) is a new hot technique in recent years. SRC can be regarded as a generalization of Nearest Neighbor and Nearest Feature Subspace. This paper first reviews the Nearest Feature Classifiers (NFCs), including Nearest Neighbor (NN), Nearest Feature Line (NFL), Nearest Feature Plane (NFP) and Nearest Feature Subspace (NFS), and formulates them as general optimization problems, which provides a new perspective for understanding NFCs and SRC. Then a locality Weighted Sparse Representation based Classification (WSRC) method is proposed. WSRC utilizes both data locality and linearity; it can be regarded as extensions of SRC, but the coding is local. Experimental results on the Extended Yale B, AR databases and several data sets from the UCI repository show that WSRC is more effective than SRC. 相似文献
7.
稀疏编码的概念源于视神经网络的研究,是对只有一小部分神经元同时处于活跃状态的多维数据的神经网络的表示方法。稀疏编码理论在视神经细胞的响应特性和外部环境刺激的统计特性之间建立一种科学的数量联系,逐渐成为了一种有效理解人类神经系统信息加工机制的理论工具,在盲源信号分离、语音信号处理、图像特征提取、自然图像去噪、以及模式识别等方面取得了许多成果,具有重要的实用价值。 相似文献
8.
针对含光照、表情、姿态、遮挡等误差或被噪声污染的人脸图像的识别问题,本文提出一种基于Gabor低秩恢复稀疏表示分类的人脸图像识别方法。该方法首先用低秩矩阵恢复算法求得训练样本图像对应的误差图像;然后,对每一个训练样本图像及其对应的误差图像进行Gabor变换,得到相应的Gabor特征向量,并将这些Gabor特征向量组成一个Gabor特征字典;进而,计算测试样本图像Gabor特征向量在该Gabor特征字典下的稀疏表示系数,并用该稀疏表示系数和Gabor特征字典,对测试样本图像的Gabor特征向量进行类关联重构,同时计算相应的类关联重构误差。最后,根据测试样本图像Gabor特征向量的类关联重构误差,实现对测试样本图像的分类识别。在CMU PIE、Extend-ed Yale B和AR数据库上的实验结果表明,本文提出的人脸图像识别方法具有较高的识别率和较强的抗干扰能力。 相似文献
9.
为了保持高光谱(HS)超分辨率重建过程中的频谱一致性和边缘锐度,提出一种基于空间谱结合非局部相似性的超分辨率重建算法。首先,使用HS图像生成模型,采用稀疏正则化解决全色(PAN)图像和HS图像重建的病态问题求逆;然后分析了从高空间分辨率到低空间分辨率数据生成的丰度系数映射;最后利用非局部相似性,设计空间谱联合正则化项。实验结果表明,本文算法重建图像在PSNR,SSIM和FSIM方面明显高于其他优秀算法,在SAM和ERGAS方面明显低于其他优秀算法,在光谱失真方面丢失最少,仅有2%-3%,低于其他算法30%左右,且重建效果更加清晰自然。 相似文献
10.
A Single Image Super-Resolution (SISR) reconstruction method that uses clustered sparse representation and adaptive patch aggregation is proposed. First, we randomly extract image patch pairs from the training images, and divide these patch pairs into dif-ferent groups by K-means clustering. Then, we learn an over-complete sub-dictionary pair offline from corresponding group patch pairs. For a given low-resolution patch, we adap-tively select one sub-dictionary to reconstruct the high resolution patch online. In addition, non-local self-similarity and steering kernel regression constraints are integrated into patch aggregation to improve the quality of the re-covered images. Experiments show that the proposed method is able to realize state-of-the-art performance in terms of both objective evaluation and visual perception. 相似文献
11.
12.
基于稀疏矩阵的网络编码安全存储系统 总被引:2,自引:0,他引:2
网络编码是近几年来通信科学一个新兴的研究领域。结合图论及有限域运算的相关知识,简要阐述了网络编码的编解码原理、优点及其应用。针对分布式安全存储系统,结合LDPC码中稀疏矩阵与非规则矩阵等概念,讨论了随机线性网络编码的具体编码过程。通过编码优化,构造稀疏的校验矩阵,提高了编译码效率,降低了复杂度。最后,指明了网络编码在安全存储系统领域的优势和实际应用中的发展方向。 相似文献
13.
目标表观变化的处理是视觉跟踪领域极具挑战性的问题,该文针对这一问题,在粒子滤波框架下提出一种高效的基于超像素的L1跟踪方法(SuperPixel-L1 tracker,SPL1)。首先利用具有结构性信息的中层视觉线索(超像素)构造字典来对目标的表观建模;然后求解由粒子表示的候选目标状态的L1范数最小化,把重构误差最小的候选状态作为跟踪的结果;最后进一步改进了字典的在线更新策略,不论目标发生遮挡与否,字典都被学习更新;为了降低目标发生漂移的可能,更新时保留初始帧的信息。仿真结果验证了SPL1在目标发生长时间遮挡、尺度和光照变化时依然能够稳定地跟踪目标。 相似文献
14.
本文提出一种基于稀疏表达残差的非参数化运动目标检测算法,在假设前景变化相对静态背景可以视为稀疏残差的基础上,采用视频前n帧初始化稀疏表达字典;利用字典对后续视频帧进行重构,提取每帧的重构残差;结合基于光照强度的全局阈值矩阵,将残差图像二值化,提取图像前景;利用前景区域和边缘点关系剔除ghost区域;采用增量PCA(Principal Component Analysis)算法和保守更新的思想对背景模型进行更新.在changedetection.net提供的shadow数据集上实验表明,采用全局更新和残差计算的方法,可以有效的解决由于自然场景光线变化导致的阴影变化,并且对自然场景中背景的小幅度抖动和相机抖动等问题也具有一定的抵抗能力. 相似文献
15.
16.
目标编码系数的稀疏性使得L1跟踪成为解决遮挡目标跟踪的有效方法之一,但是现有稀疏编码算法没有利用L1跟踪中编码系数的特殊稀疏结构.本文基于目标模板系数稀疏度约束要求和小模板系数的空间连续性结构,利用块坐标优化原理提出一种两阶段稀疏编码算法用于视觉跟踪.在第一阶段,该算法利用正交匹配追踪求解具有约束稀疏度的目标模板系数,在第二阶段,该算法利用动态组稀疏编码求解具有空间连续性的小模板系数.在粒子滤波框架下,利用提出的稀疏编码算法实现了鲁棒的视觉跟踪.实验结果表明本文提出的跟踪方法比现有跟踪方法具有更强的鲁棒性和较高的跟踪精度. 相似文献
17.
针对卷积稀疏编码能够较好地保留图像信息特征的这一特点,提出基于低秩分解和卷积稀疏编码的多源图像融合方法.为了避免图像分块处理对图像结构的影响,将每幅待融合图像进行全局处理.首先,通过低秩分解将图像分解成低秩和稀疏两部分;接着,对稀疏部分进行卷积分解,可以训练得到一组稀疏滤波器字典,再将卷积稀疏编码应用到图像的融合中;然... 相似文献
18.
19.
As a promising technique, sparse coding can be widely used for representation, compression, de-noising and separation of signals. This technique has been introduced into noisy speech processing, where enhancing speech itself or speech feature remains a challenge. Unlike other fields where noises are dense, the noises in speech are often sparse or partly sparse over the speech dictionary, re-sulting in performance degradation. It is necessary to un-derstand the noise conditions of speech environments and the applied range of sparse coding. This paper analyzes the assumptions of sparse coding and provides the bounds of reconstruction error for two sparse coding methods which are widely used. Based on this analysis, the performance of the two methods under different conditions are com-pared. The results show that the performance of sparse coding can be improved by a well-prepared noise dictio-nary. Experiments on speech enhancement and recognition are conducted, and the results coincide with the theoretical analysis well. 相似文献
20.
针对低分辨率、低质量人脸图像重建问题,提出了一种新的基于稀疏表示的人脸超分辨率算法。在训练阶段,人脸的位置特征被用于保持人脸块的全局信息,人脸块间的几何结构被用于保持高低分辨率超完备冗余字典的流形结构,从而提高字典的表达能力;在重建阶段,K近邻加权稀疏表示被用于消除稀疏编码噪声,以提高高分辨率人脸图像重建系数的精度。实验结果表明,提出的方法取得了较好的主客观质量。 相似文献