共查询到20条相似文献,搜索用时 46 毫秒
1.
Min-Sung Hong Seon-Hong Kim Shin-Young Im Jung-Gu Kim 《Metals and Materials International》2016,22(4):621-629
This study examined the effect of L-ascorbic acid (A.A) concentration on the pitting corrosion properties of 316L stainless steel (316L STS) of heat exchanger in synthetic tap water containing 400 ppm of Cl- ion. The pitting corrosion of 316L STS can be effectively inhibited by the 10-4 M of A.A concentration. In this condition, the adsorption of A.A reinforced the passive film of steel by blocking the Cl- ions at the active site. However, the passive film was deteriorated and severe pitting corrosion occurred above the 10-4 M of A.A concentration. Above the 10-4 M of A.A concentration, A.A generates soluble chelate rather than absorbs on the steel surface and it causes passive film deterioration and severe pitting corrosion. The critical ratio, which is a critical ratio of surface coverage of aggressive to inhibitive ion necessary to initiate localized corrosion, calculated 2.93 up to the 10-4 M. It has approximately 2.93:1 ratio of the coverage of local Cl- ions to A.A. Above the critical ratio, the pitting corrosion will occur with degradation of the passive film. On the other hands, above the 10-4 M A.A concentration caused a negative effect because the heat energy for adsorption is increased. 相似文献
2.
A mixture of hydrogen peroxide, sulphuric and hydrofluoric acids has been used as pickling solution at pH 2.0 for AISI 316L austenitic stainless steel (SS). The stability of the H2SO4‐HF‐H2O2 mixture is assessed varying the ferric ions content from 0 to 40 g/L, the temperature from 25 to 60°C, and with and without stirring of the pickling solution. The AISI 316L SS pickling rate at 50°C was 2.6 and 0.2 mg/dm2 day (mdd) in the absence and presence of 40 g/L ferric ions, respectively. p‐toluene sulphonic acid (PTSA) has been used as stabiliser of hydrogen peroxide. 相似文献
3.
H. Hocheng P. S. Kao Y. F. Chen 《Journal of Materials Engineering and Performance》2001,10(4):414-418
316L stainless steel is deemed an indispensable material in the semiconductor industry. In many instances, the surface of
the production equipment needs to be treated for low-corrosion passivation, good finish, weldability, and cleanliness. The
process characteristics of electropolishing meet these requirements well. The current study investigates the effects of the
major processing parameters on the anticorrosion performance and the surface roughness. The electrolyte with 10% water content
and a ratio between H2SO4 and H3PO4 of 4 and 6 has been proven to be successful, showing no corrosion pitting points on the specimen surface. The electrolyte
temperature of 85±10 °C and the electrical current density of 0.5 to 1.0 A/cm2 are found to be optimal. The processing time beyond 3 to 5 min produces no further improvement. The addition of 10% glycerin
provides a very fine surface (maximum roughness of 0.05 μm), while the anticorrosion performance is deteriorated. The results obtained are useful for the manufacture of the semiconductor
equipment. 相似文献
4.
The electrosynthesis of polypyrrole films onto 316L stainless steel from near neutral and alkaline solutions containing molybdate and nitrate is reported. The corrosion behavior of the coated electrodes was investigated in NaCl solutions by electrochemical techniques and scanning electron microscopy. The polymer formed potentiostatically in a solution of pH 12 is the most efficient in terms of adhesion and corrosion protection. The coating significantly reduces the pitting corrosion of the substrate. The results are interpreted in terms of the nature of dopants, the good electroactivity of the polymer formed in alkaline solution and the passivating properties of the oxide layer. 相似文献
5.
《中国铸造》2012,(4):307-312
316L stainless steel is widely used for fashion jewelry, but it can carry a large number of bacteria and bring the risk of infection since the steel has no antimicrobial performance. In this paper, the effects of Ce on the antibacterial property, corrosion resistance and processability of 316L were studied by microscopic observation, thin- film adhering quantitative bacteriostasis, and electrochemical and mechanical tests. The results show that a trace of Ce can distribute uniformly in the matrix of 316L and slightly improve its corrosion resistance in artificial sweat. With an increase in Ce content, the Ce is prone to form clustering, which degrades the corrosion resistance and the processability. The Ce-containing 316L exhibits Hormesis effect against S. aureus. A small Ce addition stimulates the growth of S. aureus. As the Ce content increases, the modified 316L exhibits an improved antibacterial efficacy. The more Ce is added, the better antibacterial capability is achieved. Overall, if the 316L is modified with Ce alone, it is difficult to obtain the optimal combination of corrosion resistance, antibacterial performance and processability. In spite of that, 0.15 wt.%-0.20 wt.% Ce around is inferred to be the best trade-off. 相似文献
6.
《材料热处理学报》2015,(10)
采用准平衡气体渗碳工艺,在不同CO浓度的CO/H2/N2混合气体条件下制备了表面强化层,研究CO浓度对316L奥氏体不锈钢渗碳层的微观结构、碳浓度分布、表面纳米硬度和残余应力的影响。结果表明,准平衡气体渗碳层为单一的扩张奥氏体相;当CO浓度小于30%时,渗碳层厚度、表面纳米硬度和压缩残余应力均随CO浓度的提高而提高,当CO浓度高于35%时,渗碳气体碳活度降低,渗碳表面强化效果降低;经470℃条件下准平衡渗碳20 h后,316L不锈钢渗碳层厚度最高可达30μm,表面碳浓度增加至2.6 mass%,导致表面纳米硬度从3 GPa增加至9 GPa,并产生1300 MPa以上的压缩残余应力。 相似文献
7.
采用氮含量不同的三种焊丝分别对316L奥氏体不锈钢进行了TIG焊接,通过金相显微镜和扫描电镜对其焊缝微观组织进行了观察,对比分析了焊缝的凝固模式和焊缝组织的析出行为,研究了氮对焊缝凝固模式和组织的影响.结果表明,焊缝氮含量为0.018%时,焊缝的主要凝固模式为初生相为铁素体的FA模式,δ铁素体以蠕虫状或网状分布于枝晶轴上;氮含量增加到0.088%和0.16%时,焊缝的主要凝固模式转变为初生相为奥氏体的AF模式,δ铁素体以颗粒状分布于初生奥氏体枝晶间,其数目明显减少;焊缝奥氏体组织随着氮含量的增加有明显的粗化趋势. 相似文献
8.
为提高316L不锈钢化学机械抛光(chemical-mechanical polishing,CMP)效率,针对络合剂类型对316L不锈钢加工效果的影响及影响机制进行研究。以材料去除率(material removal rate,MRR)和表面粗糙度(Ra)为指标,探究络合剂类型(甘氨酸、草酸和柠檬酸)及浓度对抛光效果的影响。利用电化学工作站、接触角测量仪和X射线光电子能谱仪(XPS)分析络合剂对316L不锈钢CMP加工影响机制。结果表明:当甘氨酸质量分数为0.2%时,能够同时获得较高的材料去除率和较低的Ra,分别为210 nm/min和1.613 nm。高浓度的络合剂对316L不锈钢材料去除率的抑制作用来源于络合剂增强了316L不锈钢表面耐蚀性,降低了表面氧化速度。XPS分析表明部分甘氨酸络合物会吸附于316L不锈钢表面产生缓蚀作用。 相似文献
9.
固溶处理对316L不锈钢组织和性能的影响 总被引:1,自引:1,他引:1
采用箱式电阻炉,对316L不锈钢进行了固溶处理实验,并对其组织和力学性能进行了观察和检测.结果表明:随着固溶温度的提高,强度和硬度指标下降,伸长率迅速增加;随着保温时间的增加,其强度和硬度指标逐渐下降,伸长率在保温30 min时间内变化不大;水冷要比雾冷得到的综合力学性能优越.试样厚度为4 mm时,合理的固溶处理工艺为:1050℃保温6 min,然后水淬处理.固溶处理后试样内部组织均匀、晶粒大小适中、铁素体含量少,力学性能明显改善,抗拉强度、屈服强度分别达到565 MPa和220 MPa,伸长率为64.5%,硬度为73.1 HRB;拉伸试样断口呈现明显的韧性断裂,韧性高于热轧态产品. 相似文献
10.
Ming-Shyan Huang Hung-Chuan Hsu 《Journal of Materials Processing Technology》2009,209(15-16):5527-5535
This study compares the effects of three backbone polymers, LDPE, HDPE and LDPE/HDPE, on the dimensions and mechanical properties of 316L stainless steel MIM compact. MIM parts of optimal quality can be produced using properly formulated binders. A spiral flow test is performed firstly to elucidate the flow behaviors of MIM feedstocks. Secondly, the injection molding of tensile bars is tested to examine the dimensional stability and the mechanical strength of sintered parts against variation in the binder formula. Among the three backbone polymers considered herein, HDPE performs best in terms of both the stability of flow and the MIM compact quality; LDPE performs the worst. HDPE has significantly better length, width, density, and hardness by up to 24%, 27%, 30%, and 64%, respectively. In summary, this work has demonstrated that a backbone polymer strongly affects the dimensions and the mechanical properties of the sintered part. The proper selection of a backbone polymer, such as HDPE, is required to increase the dimensional accuracy and quality of 316L sintered parts. 相似文献
11.
The effect of Cl- on the 316L stainless steel in simulated cooling water has been studied using polarization curves, electrochemical impedance spectroscopy (EIS), Mott-Schottky plot and scanning electron microscopy (SEM) techniques. Cl- concentrations vary from 200 to 900 mg/L. Results reveal that the corrosion resistance increases with the decrease of Cl- concentration in simulated cooling water. The increase of Cl-concentration leads to the shift of the corrosion potential towards the positive direction. Mott-Schottky curves show that in the passive film, Cr2O3 and FeO at the inner layer exhibit P-type but Fe2O3 and CrO3 (CrO42-) N-type semiconductive properties. The SEM/EDX data demonstrate that elements such as Fe, O, C, Si and Cl as well as the presence of calcium and aluminum are presented on the surface of the metal. 相似文献
12.
The corrosion resistance of conducting polyaniline (PANi) coatings deposited on 316L stainless steel (316L SS) at various cycle numbers of cyclic voltammetry (2-, 3- and 4-cycles) by electro-polymerization in sulphuric acid solution containing fluoride was investigated by electrochemical techniques. The corrosion resistance of the 316L SS substrate was considerably improved by the PANi coating. The increase of the cycle number of cyclic voltammetry increased the thickness and enhanced the performance of the PANi coating due to low porosity. 相似文献
13.
The corrosion and electrochemical behaviour of 316S11 stainless steel in acetic acid solutions typifying chemical process environments has been investigated. Acetic acid concentrations tested were in the range 70-90% and included addition of 1500 ppm Br− and 200 ppm Na+. Of key interest was the impact of Cl− ions, representing an uncontrolled excursion in system chemistry. Corrosion potential-time and electrochemical polarisation measurements were made for the different environments at 90 °C and the characteristics of the surface film formed at different stages of exposure analysed using X-ray photo-electron spectroscopy (XPS).The most distinctive feature of the results was the step increase in potential with exposure time in the 70% acetic acid solution, in the absence of Cl− ions, indicating a sharp transition from active corrosion to some degree of passivity. No such transition was observed in the 90% acetic acid solution. Addition of chloride to the 70% acetic acid solution after the step in potential resulted in a step decrease in potential once a critical level of chloride had been exceeded. If the chloride were present on initial immersion, the potential stayed relatively low and the steel remained active. XPS analysis suggested that local enrichment of Mo was important in initiating the passivation process but the precise details of the mechanism remain speculative. 相似文献
14.
Weight loss, corrosion potential and EIS measurements were performed to understand the role of HCl in the pickling of oxidised 304 stainless steel in iron chloride-based electrolytes. The surface finish was analysed with SEM-EDX. The oxidised 304 stainless steel is active on immersion, resulting in a low corrosion potential and a high weight loss. After certain duration the stainless steel either remains active or becomes passive depending on HCl content. At low HCl contents, an ongoing active-to-passive transition results in localised corrosion at pits, grain boundaries and honeycombed recesses. The corrosion potential becomes high and the weight loss is suppressed. The weight loss decreases in the initial stage and rises on extended pickling with adding HCl. Because of anodic brightening, the 304 stainless steel is always active as HCl is concentrated. In contrast with the material that is passivated, the charge transfer resistance is considerably low and the double layer capacitance is large during that brightening. 相似文献
15.
Surface passivation is a promising technique for improving the corrosion resistance both in vitro and in vivo as well as the biocompatibility of 316L stainless steel. In this work, we studied the effect of different passivative processes on the in vitro corrosion resistance of 316L stainless steel wire. Characterization techniques such as anodic polarization test, scanning electron microscopy, auger electron spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy were employed to co-relate the corrosion behavior to various surface characteristics and surface treatments. Results showed that all of these surface treatments did not improve the corrosion resistance of the alloy satisfactorily except amorphous oxidation. This improvement is attributed to the removal of plastically deformed native air-formed oxide layer and the replacement of a newly grown, more uniform and compact one which is composed of nano-scale oxide particles with higher oxygen and chromium concentrations. The properties of surface oxide layer, rather than its thickness, seem to be the predominant factor to explain the improvement of in vitro corrosion resistance. 相似文献
16.
以选区激光熔化(SLM)制备的316L不锈钢为研究对象。首先对打印件的孔隙率、微观组织进行了表征,然后探究了热处理对组织各向异性及硬度的影响规律。结果表明,打印件的体积孔隙率和面孔隙率均较低,均在1%以下,二者之间没有明显差别;对于垂直打印方向的XY面,主要由互成67°交叉的条状微熔池组成,条状微熔池中包含柱状和胞状两种组织,前者主要位于熔池边界,长约几十微米、宽约400 nm,后者主要位于熔池中心位置,尺寸约400 nm;对于平行于打印方向的YZ面,熔池主要呈扇状,扇状熔池内部也包含柱状和胞状两种组织,但分布更加复杂,其中柱状组织贯穿多层熔池生长,XY面与YZ面在微观组织上存在着明显的各向异性。适当的热处理工艺可有效改善组织的各向异性, XY面在800 ℃×2 h热处理后基本可以实现均匀化,而YZ面在900 ℃×2 h处理后才达到均匀化。拥有微纳尺寸结构的增材制造件拥有比传统零件更高的硬度。此外,热处理可使不同方向上的硬度下降,但垂直打印方向上的硬度下降幅度更大。 相似文献
17.
316L奥氏体不锈钢具有较强的应变硬化特征,建立合适的硬化模型可以更加准确地预测焊接残余应力.建立一种新型的非线性混合硬化模型,基于SYSWELD软件,采用间接耦合的三维热弹塑性有限元法模拟316L奥氏体不锈钢三道槽焊缝的残余应力.结果表明,材料的硬化模型对焊接残余应力的预测具有重要的影响,随着热循环次数的增加,硬化模型的影响越明显;与实际测量结果比较,随动硬化模型低估了焊接残余应力,等向硬化模型高估了残余应力,采用非线性混合硬化模型可以更加准确地模拟焊接残余应力. 相似文献
18.
19.
316L不锈钢管道焊接工艺 总被引:3,自引:0,他引:3
我公司承担了攀钢煤化公司回收Ⅱ期脱酸蒸氨装置改造工程 ,该工程大部分是要求耐酸耐碱腐蚀的不锈钢管道 ,材质为 316L。工程质量的好坏 ,将直接影响到生产的安全运行。因此 ,制定合理有效的不锈钢焊接工艺是关键。1 焊接工艺( 1)焊接方法。由于现场多数为不锈钢管道 ,且大小不一 ,根据不锈钢的焊接特点 ,尽可能减小热输入量 ,故采用手工电弧焊、氩弧焊两种方法 ,d >15 9mm的采用氩弧焊打底 ,手工电弧焊盖面。d≤15 9mm的全用氩弧焊。焊机采用手工电弧焊 /氩弧焊两用的WS7-4 0 0逆变式弧焊机。( 2 )焊接材料。奥氏体不锈钢是… 相似文献
20.
近年来A -TIG(ActiveFluxTIG)焊在焊接界受到了人们的广泛重视 ,它是在母材表面涂敷一层活性焊剂进行焊接 ,在焊接电流不变的情况下使焊接熔深大幅度增加 (1~ 3倍 ) [1 ] 。从A -TIG焊缝质量来看 ,其成形系数Φ =B/H (B为熔宽 ,H为熔深 )愈小表示焊缝愈深而窄 ,这意味着既能保证焊缝充分焊透 ,又使得焊缝宽度方向的无效加热区和热影响区范围缩小 ,从提高焊接生产效率、减少焊接变形和缓解热影响区恶化的角度上来看 ,都是非常有利的。目前 ,国内外多位学者都对A -TIG焊进行了深入的研究和试验 ,但大都集中在板的试验上 ,本文主要针… 相似文献