首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new method for acquiring flow images using synthetic aperture techniques in medical ultrasound is presented. The new approach makes it possible to have a continuous acquisition of flow data throughout the whole image simultaneously, and this can significantly improve blood velocity estimation. Any type of filter can be used for discrimination between tissue and blood flow without initialization, and the number of lines used for velocity estimation is limited only by the nonstationarity of the flow. The new approach is investigated through both simulations and measurements. A flow rig is used for generating a parabolic laminar flow, and a research scanner is used for acquiring RF data from individual transducer elements. A reference profile is calculated from a mass flow meter. The parabolic velocity profile is estimated using the new approach with a relative standard deviation of 2.2% and a mean relative bias of 3.4% using 24 pulse emissions at a flow angle of 45 degrees. The 24 emissions can be used for making a full-color flow map image. An in-vivo image of flow in the carotid artery for a 29-year-old male also is presented. The full image is acquired using 24 emissions.  相似文献   

2.
In this paper, a scheme called coded excitation with spectrum inversion (CEXSI) is presented. An established optimal binary code whose spectrum has no s and possesses the least variation is encoded as a burst for transmission. Using this optimal code, the decoding filter can be derived directly from its inverse spectrum. Various transmission techniques can be used to improve energy coupling within the system pass-band. We demonstrate its potential to achieve excellent decoding with very low (<80 dB) side-lobes. For a 2.6 /spl mu/s code, an array element with a center frequency of 10 MHz and fractional bandwidth of 38%, range side-lobes of about 40 dB have been achieved experimentally with little compromise in range resolution. The signal-to-noise ratio (SNR) improvement also has been characterized at about 14 dB. Along with simulations and experimental data, we present a formulation of the scheme, according to which CEXSI can be extended to improve SNR in sparse array imaging in general.  相似文献   

3.
Decorrelation strain noise can be significantly reduced in low echo-signal-to-noise (eSNR) conditions using coded excitation. Large time-bandwidth-product (>30) pulses are transmitted into tissue mimicking phantoms with 2.5-mm diameter inclusions that mimic the elastic properties of breast lesions. We observed a 5-10 dB improvement in eSNR that led to a doubling of the depth of focus for strain images with no reduction of spatial resolution. In high eSNR conditions, coded excitation permits the use of higher carrier frequencies and shorter correlation windows to improve the attainable spatial resolution for strain relative to that obtained with conventional short pulses. This paper summarizes comparative studies of strain imaging in noise-limited conditions obtained by short pulses and four common aperiodic codes (chirp, Barker, suboptimal, and Golay) as a function of attenuation, eSNR and applied strain. Imaging performance is quantified using SNR for displacement (SNRd), local modulation transfer function (LMTF), and contrast-to-noise ratio for strain (CNRepsilon). We found that chirp and Golay codes are the most robust for imaging soft tissue deformation using matched filter decoding. Their superior performance is obtained by balancing the need for low-range lobes, large eSNR improvement, and short-code duration.  相似文献   

4.
A two-dimensional (2-D) array of 256 X 256 = 65,536 elements, with total area 4 X 4 = 16 cm2, serves as a flexible platform for developing acquisition schemes for 3-D rectilinear ultrasound imaging at 10 MHz using synthetic aperture techniques. This innovative system combines a simplified interconnect scheme and synthetic aperture techniques with a 2-D array for 3-D imaging. A row-column addressing scheme is used to access different elements for different transmit events. This addressing scheme is achieved through a simple interconnect, consisting of one top, one bottom single-layer, flex circuits that, compared to multilayer flex circuits, are simpler to design, cheaper to manufacture, and thinner so their effect on the acoustic response is minimized. We present three designs that prioritize different design objectives: volume acquisiton time, resolution, and sensitivity, while maintaining acceptable figures for the other design objectives. For example, one design overlooks time-acquisition requirements, assumes good noise conditions, and optimizes for resolution, achieving -6 dB and -20 dB beamwidths of less than 0.2 and 0.5 mm, respectively, for an F/2 aperture. Another design can acquire an entire volume in 256 transmit events, with -6 dB and -20 dB beamwidths in the order of 0.4 and 0.8 mm, respectively.  相似文献   

5.
A method for real-time three-dimensional (3-D) ultrasound imaging using a mechanically scanned linear phased array is proposed. The high frame rate necessary for real-time volumetric imaging is achieved using a sparse synthetic aperture beamforming technique utilizing only a few transmit pulses for each image. Grating lobes in the two-way radiation pattern are avoided by adjusting the transmit element spacing and the receive aperture functions to account for the missing transmit elements. The signal loss associated with fewer transmit pulses is minimized by increasing the power delivered to each transmit element and by using multiple transmit elements for each transmit pulse. By mechanically rocking the array, in a way similar to what is done with an annular array, a 3-D set of images can be collected in the time normally required for a single image.  相似文献   

6.
Synthetic aperture focusing using a virtual source was used previously to increase the penetration and to extend the depth of focus in high-frequency ultrasonic imaging. However, the performance of synthetic aperture focusing is limited by its high sidelobes. In this paper, an adaptive weighting technique based on a focusing-quality index is introduced to suppress the sidelobes. The focusing-quality index is derived from the spatial spectrum of the scan-line data along the mechanical scan direction (i.e., the synthetic aperture direction) after focusing delays relative to the virtual source have been applied. The proposed technique is of particular value in high-frequency ultrasound in which dynamic focusing using array transducers is not yet possible. Experimental ultrasound data from a 50-MHz imaging system with a single-crystal transducer (f-number=2) are used to demonstrate the efficacy of the proposed technique on both wire targets and speckle-generating objects. An in vivo experiment also is performed on a mouse to further demonstrate the effectiveness. Both 50-MHz fundamental imaging and 50-MHz tissue harmonic imaging are tested. The results clearly demonstrate the effectiveness in sidelobe reduction and background-noise suppression for both imaging modes. The principles, experimental results, and implementation issues of the new technique are described in this paper.  相似文献   

7.
This paper describes the design and implementation of a real-time delay-and-sum synthetic aperture beamformer. The beamforming delays and apodization coefficients are described parametrically. The image is viewed as a set of independent lines that are defined in 3D by their origin, direction, and inter-sample distance. The delay calculation is recursive and inspired by the coordinate rotation digital computer (CORDIC) algorithm. Only 3 parameters per channel and line are needed for their generation. The calculation of apodization coefficients is based on a piece- wise linear approximation. The implementation of the beamformer is optimized with respect to the architecture of a novel synthetic aperture real-time ultrasound scanner (SARUS), in which 4 channels are processed by the same set of field-programmable gate arrays (FPGA). In synthetic transmit aperture imaging, low-resolution images are formed after every emission. Summing all low-resolution images produces a perfectly focused high-resolution image. The design of the beamformer is modular, and a single beamformation unit can produce 4600 low-resolution images per second, each consisting of 32 lines and 1024 complex samples per line. In its present incarnation, 3 such modules fit in a single device. The summation of low-resolution images is performed internally in the FPGA to reduce the required bandwidth. The delays are calculated with a precision of 1/16th of a sample, and the apodization coefficients with 7-bit precision. The accumulation of low-resolution images is performed with 24-bit precision. The level of the side- and grating lobes, introduced by the use of integer numbers in the calculations and truncation of intermediate results, is below -86 dB from the peak.  相似文献   

8.
Resolution and penetration are primary criteria for clinical image quality. Conventionally, high bandwidth for resolution was achieved with a short pulse, which results in a tradeoff between resolution and penetration. Coded excitation extends the bounds of this tradeoff by increasing signal-to-noise ratio (SNR) through appropriate coding on transmit and decoding on receive. Although used for about 50 years in radar, coded excitation was successfully introduced into commercial ultrasound scanners only within the last 5 years. This delay is at least partly due to practical implementation issues particular to diagnostic ultrasound, which are the focus of this paper. After reviewing the basics of biphase and chirp coding, we present simulation results to quantify tradeoffs between penetration and resolution under frequency-dependent attenuation, dynamic focusing, and nonlinear propagation. Next we compare chirp and Golay code performance with respect to image quality and system requirements, then we show clinical images that illustrate the current applications of coded excitation in B-mode, harmonic, and flow imaging.  相似文献   

9.
Directional synthetic aperture flow imaging   总被引:1,自引:0,他引:1  
A method for flow estimation using synthetic aperture imaging and focusing along the flow direction is presented. The method can find the correct velocity magnitude for any flow angle, and full color flow images can be measured using only 32 to 128 pulse emissions. The approach uses spherical wave emissions with a number of defocused elements and a linear frequency-modulated pulse (chirp) to improve the signal-to-noise ratio. The received signals are dynamically focused along the flow direction and these signals are used in a cross-correlation estimator for finding the velocity magnitude. The flow angle is manually determined from the B-mode image. The approach can be used for both tissue and blood velocity determination. The approach was investigated using both simulations and a flow system with a laminar flow. The flow profile was measured with a commercial 7.5 MHz linear array transducer. A plastic tube with an internal diameter of 17 mm was used with an EcoWatt 1 pump generating a laminar, stationary flow. The velocity profile was measured for flow angles of 90 and 60 degrees. The RASMUS research scanner was used for acquiring radio frequency (RF) data from 128 elements of the array, using 8 emissions with 11 elements in each emission. A 20-micros chirp was used during emission. The RF data were subsequently beamformed off-line and stationary echo canceling was performed. The 60-degree flow with a peak velocity of 0.15 m/s was determined using 16 groups of 8 emissions, and the relative standard deviation was 0.36% (0.65 mm/s). Using the same setup for purely transverse flow gave a standard deviation of 1.2% (2.1 mm/s). Variation of the different parameters revealed the sensitivity to number of lines, angle deviations, length of correlation interval, and sampling interval. An in vivo image of the carotid artery and jugular vein of a healthy 29-year-old volunteer was acquired. A full color flow image using only 128 emissions could be made with a high-velocity precision.  相似文献   

10.
11.
Imaging using synthetic aperture techniques is a mature technique with a host of different reconstruction algorithms available. Often the same basic algorithm has a different name depending on where the particular algorithm is used, since it may have originated from the medical, nondestructive testing, geological, or remote sensing fields. All this adds to confusion for the nonspecialist. This article gives a short historical precise of active synthetic aperture imaging as it applies to airborne, spaceborne, and underwater remote sensing systems using either radar or sonar, then defines some generic imaging geometry and places all the usable synthetic aperture reconstruction algorithms in a unified framework. This is done by the introduction of mapping operators, which simplify the mapping or reformatting of data from one sampling grid to another. Using these operators, readers can see how strip-map synthetic aperture systems (both radar- and sonar-based) differ from spotlight synthetic aperture systems, how the various algorithms fit together, and how the chirp-scaling algorithm is likely to be the reconstruction algorithm of choice for most future strip-map systems, and just why that should be so. Multilook processing and methods to deal with undersampled apertures using postdetection digital spotlighting are put into the same unified framework, as both of these techniques are frequent adjuncts to synthetic aperture imaging. © 1997 John Wiley & Sons, Inc. Int J Imaging Syst Technol, 8, 343–358, 1997  相似文献   

12.
The stand-off imaging properties of a terahertz (THz) interferometric array are examined. For this application, the imaged object is in the near-field region limit of the imaging array. In this region, spherical and circular array architectures can compensate for near-field distortions and increase the field of view and depth of focus. Imaging of THz point sources is emphasized to demonstrate the imaging method and to compare theoretical predictions to experimental performance.  相似文献   

13.
14.
A new system for real-time synthetic aperture ultrasonic imaging   总被引:2,自引:0,他引:2  
The authors devised a way to generate in real time a cross-sectional image of an object with uniformly high resolution based on the synthetic aperture focusing technique (SAFT). A computer simulation was conducted to study the effects of essential parameters on the resulting images. An imaging system was built that produces a cross-sectional image composed of an assembly of line images of depth direction, i.e. processed A-scan images, and displays a scroll picture on a CRT (cathode ray tube) with no interruption regardless of the object size. It takes only 3 ms from the start of transmission of the ultrasonic wave to the completion of a line image reconstruction, and the framed image on a CRT is updated at the TV rate of 1/30 s. Imaging experiments were conducted using the system, and its expected performance was demonstrated.  相似文献   

15.
An ultrasound synthetic aperture imaging method based on a monostatic approach was studied experimentally. The proposed synthetic aperture method offers good dynamical resolution along with fast numerical reconstruction. In this study complex object data were recorded coherently in a two-dimensional hologram using a 3.5 MHz single transducer with a fairly wide-angle beam. Image reconstruction which applies the wavefront backward propagation method and the near-field curvature compensation was performed numerically in a microcomputer using the spatial frequency domain. This approach allows an efficient use of the FFT-algorithms. Because of the simple and fast scanning scheme and the efficient reconstruction algorithms the method can be made real-time. The image quality of the proposed method was studied by evaluating the spatial and dynamical resolution in a waterbath and in a typical tissue-mimicking phantom. The lateral as well as the range resolution (-6 dB) were approximately 1 mm in the depth range of 30-100 mm. The dynamical resolution could be improved considerably when the beam width was made narrower. Although it resulted in a slightly reduced spatial resolution this compromise has to be done for better resolution of low-contrast targets such as cysts. The study showed that cysts as small as 2 mm by diameter could be resolved  相似文献   

16.
We present a scheme for radar imaging of satellites by the inverse synthetic aperture radar technique. We include some general principles in image formation when dealing with microwave-scattering experiments, such as radar observation of a satellite, so that the article is not confined to the radar community. We propose an original motion compensation algorithm for image autofocusing: This one-stage algorithm is faster than usual two-stage algorithms and turns to be quite accurate, which can be measured by quality criteria and visual inspection of reconstructed images. We show its application to imaging of the Russian space station Mir with two different radar systems. © 1998 John Wiley & Sons, Inc. Int J Imaging Syst Technol, 9, 24–28, 1998  相似文献   

17.
Based on an analysis of the inherent signal-to-noise ratio (SNR) in medical ultrasound imaging, SNR improvements of 15-20 dB are theoretically possible for real-time phased-array imagers using coded excitation. A very simple coded excitation for phased arrays based on the principles of ;pseudochirp' excitation and equalization filtering is described. This system is capable of SNR improvements of about 15 dB with range sidelobe levels acceptable for many medical imaging applications. Such improvements permit increased operating frequencies, and hence enhanced spatial resolution, for real-time array imagers. Both simulations and measurements are used to demonstrate the efficacy of the method.  相似文献   

18.
Phased-array imaging, including complete dynamic focus, is explored for imaging using a circular aperture. Based on the constraints of catheter-based systems, an efficient synthetic aperture method has been developed for imaging using a single wire connection between the imaging array and external electronics. The method employs a highly sampled array with an element pitch small compared to the acoustic wavelength. On any given firing of the array, however, a large number of channels are electrically connected on both transmission and reception. From firing to firing, one element is dropped and one new element is included, in analogy to a classic linear array system. Using an optimal filtering approach for synthetic aperture reconstruction, a dynamically focused image exhibiting diffraction limited resolution is produced. The results of detailed simulations are presented demonstrating the capabilities of the method. In addition, the prospects for real-time implementation of the reconstruction are discussed.  相似文献   

19.
Sigma-delta (ΣΔ) modulation allows delay resolution in ultrasound beamformers to be achieved by simple clock cycle delays applied to the undecimated bitstream, greatly reducing the complexity of the signal processing and the number of bits in the datapath. The simplifications offered by this technique have the potential for low power and portable operation in advanced systems such as 3-D and color Doppler imagers. In this paper, an architecture for a portable, real-time, 3-D sparse synthetic aperture ultrasound beamformer based on ΣΔ modulation is presented, and its simulated performance is analyzed. Specifically, with a 65-element linear phased array and three transmit events, this architecture is shown to achieve a 1.1° beamwidth, a -54-dB secondary lobe level, and a theoretical frame rate of 1700 frames/s at λ/64 delay resolution using a second-order low pass ΣΔ modulator. Finally, a technique for modifying the proposed multi-beam architecture to allow improved analog-to-digital (A/D) resolution by premodulating the input signal for bandpass ΣΔ modulation is also presented  相似文献   

20.
Synthetic aperture sonar (SAS) is an emerging technology for seafloor imaging, which has an appealing property of range- and frequency-independent spatial processing resolution. However, for a low-frequency SAS system operated in shallow water environments, there are often strong sea surface and bottom reflected multipath components that interfere with the desired echo signals. Based upon a small vertically displaced hydrophone array, several spatial processing algorithms have been proposed for multipath reduction. Most of these algorithms, however, are only applicable to narrowband signals, whereas wideband signals are usually used in low-to-medium-frequency SAS systems in order to achieve a high range resolution. This paper presents a steered robust Capon beamforming (SRCB) approach, and applies the approach, together with the data-independent delay-and-sum beamforming and the conventional wideband robust Capon beamforming, to wideband multipath rejection for shallow water SAS imaging. Numerical simulations of the proposed SAS processing have verified the performance improvements on output image quality over conventional processing in terms of both ghost target strength reduction and contrast enhancement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号