首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
纳米氧化铝和氢氧化铝的研究及应用进展   总被引:1,自引:0,他引:1  
对目前纳米氧化铝和氢氧化铝的制备方法及应用进行了综述,总结了纳米氧化铝和氢氧化铝制备及应用中存在的问题。并提出了一些建议。  相似文献   

2.
氮氧化铝透明陶瓷是备受关注的材料,广泛应用于商业和军事领域,如红外和可见光窗口、透明装甲等方面。最近几年,氮氧化铝透明陶瓷得到了快速发展,出现新的制备方法、新的烧结助剂及新的应用领域。然而,目前还没有系统的、最新的相关综述。此外,氮氧化铝透明陶瓷还存在一些未解决的问题和新的挑战,严重阻碍其商业化应用。因此,本文作者全面介绍氮氧化铝陶瓷的制备方法,包括高温固相反应法、氧化铝还原氮化法、化学气相沉积法和溶胶凝胶等方法,并对这些制备方法的优缺点进行比较分析。此外,系统地总结烧结助剂和烧结工艺对氮氧化铝透明陶瓷透光性的影响。最后,对氮氧化铝透明陶瓷面临的挑战和发展趋势进行讨论和展望。  相似文献   

3.
改性纳米氧化铝悬浮体系制备工艺研究   总被引:1,自引:1,他引:0  
邢新侠  甘志宏 《表面技术》2015,44(4):104-108
目的研究硅烷基聚合物改性的纳米氧化铝悬浮体系的制备工艺。方法以纳米氧化铝悬浮体系中Al2O3的含量为考核指标,考核不同改性剂、改性剂用量、改性时间、悬浮溶剂的选择对悬浮体系的影响。结果确定了最优制备工艺,改性剂用量为0.010 m L/g(Al2O3),改性时间为30 min,悬浮溶剂为PMA,在该工艺条件下,制备的纳米氧化铝悬浮体系中Al2O3的质量浓度最高可达0.4915 g/m L。结论硅烷基聚合物可有效包覆在纳米氧化铝的表面上,实现对纳米氧化铝的改性,改性后的纳米氧化铝可制备成稳定的悬浮体系。  相似文献   

4.
激光技术在材料科学中的应用   总被引:3,自引:1,他引:3  
综述了激光技术在纳米村料制备,表面改性和成形技术等先进制造工艺中的应用和进展。重点介绍了激光消融法制备纳米颗粒、薄膜的原理、特点段激光淬火、激光表面熔敷和激光表面合金化等材料表面改性技术。同时,对先进的激光立体成形技术及其应用现状做了慨述。  相似文献   

5.
郝晓茹  张羽  谢军  盛伟 《表面技术》2023,52(6):400-409
目的 研究氧化铝经硬脂酸分子改性后的润湿行为,从表面改性角度探索聚合物自组装润湿性原理,进而制备出一种疏水性能良好的超疏水表面。方法 使用COMPASS力场进行分子动力学模拟,构建基于非键合粒子的Al2O3超晶胞模型体系,采用最速下降法和共轭梯度法进行优化,使所构建的模型在体系平衡下保持能量最小原则,并对其求解分析。进而基于模拟材料,通过两步喷涂法制备以改性纳米氧化铝为涂层的超疏水表面,观察表征特征,验证模型的正确性。最后从模拟构象、径向分布函数以及均方根位移方面分析氧化铝经硬脂酸分子改性前后水分子团簇在玻璃、氧化铝表面的微观润湿行为。结果 经硬脂酸改性后,氧化铝表面由亲水表面成为疏水表面。经分子动力学模拟表明,当硬脂酸浓度增加,每个硬脂酸的表面能由–110.5 kJ/mol变为–80.4 kJ/mol,硬脂酸分子降低了水分子团簇在玻璃和氧化铝表面的扩散系数,对疏水性的强弱有着重要的影响。结论 氧化铝颗粒与玻璃表面都具有强亲水性,且氧化铝对水分子的吸附能力要强于玻璃。硬脂酸能够降低氧化铝的表面能,且与纳米氧化铝发生化学反应后,将氧化铝由超亲水改性为超疏水。  相似文献   

6.
纳米孔洞阳极氧化铝膜的制备及应用   总被引:3,自引:0,他引:3  
本文对以高纯铝为原料,采用阳极氧化技术,制备纳米孔径的氧化铝膜工艺作了详细的介绍,并对近十年来阳极氧化铝膜作为功能材料方面的应用以及研究进展作一综述。  相似文献   

7.
以王栋教授领衔发明的一种新型高产出环境友好型热塑性纳米纤维的制备工艺——熔融挤出相分离法为基础,综述了热塑性纳米纤维及其膜制备的基本原理、工艺过程、功能化改性及应用研究相关进展。重点介绍了:1以纤维素为基体抽取热塑性纳米纤维的方法及结构调控的机理;2纳米纤维及其膜通过共聚接枝处理、表面原子转移自由基聚合(SI-ATRP)方法、点击化学(Click Reaction)等方法实现其功能化改性的原理;3功能性纳米纤维材料在生物传感器、抗菌、过滤分离和抗污等领域的应用,包括:具有快速检测与消灭细菌等有害微生物的协同功能的纳米纤维膜传感器、具有优异杀菌功能的纳米纤维膜、应用于水净化和重金属离子去除的高效过滤纳米纤维膜、抗非特异性蛋白吸附以及在光照下具备自清洁自消毒功能的纳米纤维材料等。最后,分析了发展新型纳米纤维的关键问题及重要性,展望了纳米纤维的未来发展方向和潜在的应用领域。  相似文献   

8.
综述准一维铁镍合金材料(纳米棒、纳米线、纳米管、纳米纤维、纳米须)的各种制备方法和应用现状,主要介绍模板法、磁场引导羰基热分解法、还原法、微波等离子体法、溶胶-凝胶-热分解还原法、配位共沉淀-热分解法等,比较了各种制备方法的优缺点,介绍了其在相关领域的应用现状,最后展望其制备和应用的发展趋势。  相似文献   

9.
脱合金法制备纳米多孔金属的研究进展   总被引:1,自引:0,他引:1  
纳米多孔金属具有独特的物理、化学、力学性能,具有极大的科学与工程应用潜力.脱合金法是制备此类材料的有效技术,是实现其应用的关键.本文概述了脱合金法制备纳米多孔金属的原理,并从脱合金法制备纳米多孔金属的材料体系、初始材料的制备工艺以及纳米多孔金属的性能三方面综述了脱合金法制备纳米多孔金属的研究进展.  相似文献   

10.
电沉积法制备纳米晶材料   总被引:9,自引:0,他引:9  
电沉积法是制备完全致密的纳米晶体材料最有前途的方法之一。本文综述了电沉积法制备纳米晶镍及其合金的研究现状及制备方法对纳米晶材料性质的影响。  相似文献   

11.
为了满足新型航空发动机的性能要求,需要开发出能在超高温条件下服役的热障涂层材料.近年来已有多种陶瓷材料被证实在热障涂层领域具有发展前景,在这之中,稀土锆酸盐材料有着高温下热导率较低与稳定性良好的特点,其中又以锆酸钆材料的热导率最低,热膨胀系数最高.概述了锆酸钆材料的结构特点,对其在高温下发生的有序无序转变进行了介绍,总...  相似文献   

12.
毕亚男  吴先月  陈松  谢明  方继恒  刘曦 《贵金属》2019,40(S1):62-72
针对在材料科研领域已得到广泛应用的扩散偶技术,总结了扩散偶技术的特征、发展和优势,介绍了传统制备扩散偶的多种方法,以及当前较为新颖的放电等离子烧结法、激光成型、薄膜法、多元扩散节等制备高通量扩散偶的技术路线和相关技术。在此基础上总结了扩散偶技术在相图测定、扩散动力学数据测定、钎焊性能研究及高通量制备技术方面的应用。最后,结合贵金属材料体系的特点对贵金属扩散偶制备的工艺提出了具体的要求及建议。  相似文献   

13.
石墨烯的衍生物——氧化石墨烯(GO)因可实现逐层堆叠,在片层之间形成一定间距的纳米通道,通过粒子的尺寸大小不同,进行尺寸筛分,故可应用于物质的选择性分离,在膜材料领域引起了研究者们的广泛关注.基于氧化石墨烯独特的二维结构,为探索氧化石墨烯在膜分离领域的应用,对氧化石墨烯分离膜的制备技术及改性进行简要地概述.在氧化石墨烯...  相似文献   

14.
光生阴极保护是一种新型的电化学保护方法,近年来成为腐蚀防护领域的研究热点。TiO_2薄膜具有光生电子-空穴对分离能力优异、稳定性良好、价格低廉等优点,在光生阴极保护技术中具有突出优势。首先介绍了TiO_2薄膜光生阴极保护原理,随后介绍了TiO_2薄膜材料的不同制备方法,包括溶胶-凝胶法、阳极氧化法、水热法、热分解法、电泳沉积法和磁控溅射法等。接着针对目前TiO_2薄膜材料存在的问题,阐述了不同掺杂/复合改性方法,主要有掺杂金属和非金属、表面金属沉积、纳米碳材料复合和半导体复合等。同时,总结了不同TiO_2涂层/金属体系(TiO_2/不锈钢体系、TiO_2/铜体系和TiO_2/碳钢体系等)的光生阴极保护研究进展。最后,对TiO_2光生阴极保护技术今后的发展进行了展望,指出拓展TiO_2薄膜的光吸收范围,提高TiO_2光生电子-空穴对的分离效率,获得高结合力、高耐磨性、抗老化的TiO_2涂层,将是未来光生阴极保护领域的重要发展方向。  相似文献   

15.
结合激光熔覆自润滑涂层实例,从材料设计、制备工艺、性能优化等方面综述了激光熔覆自润滑涂层的研究现状、存在的问题及发展方向。总结了常用固体润滑材料的摩擦学性能特点,并就如何选择自润滑材料、包覆技术和宽温域润滑的研究进展进行了简要阐述。讨论了激光熔覆制备自润滑复合涂层中软质润滑相和硬质耐磨相之间的关系,以及熔覆材料成分对涂层摩擦学性能的影响。简要分析了裂纹成因及控制涂层质量的常用手段,重点探讨了激光工艺参数对涂层中润滑相体积分数和分布状态的影响,并总结了激光熔覆自润滑涂层在工程中的应用,以期为激光熔覆技术的发展提供参考。目前激光熔覆自润滑涂层的应用已初具规模,但在润滑剂的失效与防护、新材料的研究与应用、制备工艺的优化以及针对特殊环境下的摩擦磨损实验研究等方面仍存在较大发展空间。  相似文献   

16.
杨炳元  王忠维  麻彦龙 《表面技术》2020,49(12):127-137
层状双金属氢氧化物(Layered Double Hydroxides,LDHs)是一种具有双金属氢氧化物层状结构的无机材料。LDHs因具有层间阴离子可交换这一特性,可以起到负载缓蚀剂、捕获腐蚀性离子等作用,在金属腐蚀防护领域拥有巨大的应用潜力。总结了LDHs粉体与LDHs薄膜常见的制备方法,包括制备粉体的共沉淀法、水热合成法、离子交换法、焙烧还原法、尿素合成法,以及制备薄膜的胶体沉积法、溶剂蒸发法、旋转涂抹法、剥层组装法、原位生长法,并对不同制备方法的优缺点进行了对比分析。对LDHs的层间阴离子交换机理、物理阻隔机理以及协同防腐蚀机理进行了阐述与分析。在防腐蚀机理基础上,根据LDHs的不同存在形态,将LDHs在金属腐蚀防护领域中的主要应用途径概括为三类:一是以粉体形式掺入防腐蚀涂层作为添加剂或者缓蚀剂的载体;二是直接在金属基体表面通过化学转化原位生长LDHs薄膜并负载缓蚀剂或者进行化学改性;三是对阳极氧化膜进行封孔处理。最后对LDHs在金属腐蚀防护领域的应用和发展趋势进行了展望。  相似文献   

17.
点击化学反应是一种模块化合成新物质的方法,具有环保、高产率、反应条件温和等特点,在材料保护和材料表面修饰等领域展现出极大的发展空间。点击化学反应可以简单高效地合成聚合物,使其在防护性涂层材料制备中具有重要地位。通过利用点击化学反应可以检测材料的损伤情况,并实现材料失效的可视化,这为防护性材料的开发提供了全新的研究思路。点击化学反应还可以高效地往缓蚀剂分子中引入不同的官能团,从而得到具有不同特性的分子结构,进而有效地提高缓蚀剂的缓蚀效率。另外点击化学反应能够实现材料表面特定部位的局部修饰,具有可定量、可定位的特点。但是在材料保护领域得到应用的点击反应数量仍然很少,仍需对点击反应的催化剂和反应条件进行研究。简要地介绍了点击化学基本概念以及特点,重点探讨了其在材料保护领域的应用,主要包括防护性材料的制备、缓蚀剂合成、表面处理等方面,总结了点击化学技术目前在材料保护应用中存在的问题,并对其发展前景进行了评述。  相似文献   

18.
张曙光  张津 《表面技术》2023,52(6):13-23
阴极等离子体电解沉积(CPED)技术是一种新型材料表面改性技术,在腐蚀防护、高温抗氧化和催化等诸多领域具有潜在应用前景。首先简要介绍了CPED技术的发展历程,包括推进该技术发展的一些重要事件。概述了CPED放电机理的相关研究,包括在其不同发展阶段提出的单一气膜层击穿理论和气-固双电介质层理论模型。在此基础上对CPED工艺及涂层制备的改性调控方法进行了系统性的总结,包括通用性的气膜层改性和特异性的涂层调控改性,并提出了其中的问题和不足。重点综述了近年来CPED技术沉积涂层的研究进展,包括CPED技术制备金属涂层、合金涂层、合金基复合涂层、陶瓷涂层、改性陶瓷涂层和碳材料等方面的研究,着重总结了CPED制备金属和合金基涂层及改性陶瓷涂层的结构与性能。最后,针对CPED技术的研究前景、发展方向和待解决问题进行了展望,包括其潜在的应用领域、工艺与机制研究、可制备涂层体系以及环境友好性的不足和相应的改进研究方向。CPED技术应用潜力巨大,仍需开展更加系统、深入和全面的研究工作,以进一步拓展其可制备涂层体系和应用领域。  相似文献   

19.
杨治庆  王毅  张盾 《表面技术》2019,48(7):175-184
海洋生物污损引起的一系列经济损失和安全问题,是海洋开发过程中必须面临的重要问题之一,因此开发新型高效的防污技术具有重要意义。随着光催化抗污技术的发展,其在海洋防污的应用受到了广大研究者的关注。卤氧化铋(BiOX,X=Cl、Br、I)薄膜作为一种新型半导体薄膜,由于具有优异光催化性能、较高的机械强度和易于回收等优点,而成为应用于光催化防污领域中新的研究热点。综述了BiOX半导体薄膜的制备方法及其应用领域的最新进展。首先,在海洋污损与现存防污技术的研究背景下,概述了光催化技术应用于海洋防污的潜力。其次,综述了国内外当前BiOX薄膜制备技术及其应用领域,并介绍了各种方法的优缺点。之后总结了BiOX半导体膜在海洋防污领域的最新应用研究,其中特别强调了海洋环境中膜材料应用的必要性。最后,展望了BiOX半导体薄在海洋防污领域的发展前景,概述了可能产生突破性研究成果的发展方向,为进一步将BiOX薄膜应用于海洋防污领域打开了新的视角。  相似文献   

20.
本文详细叙述了石墨烯及其衍生物等增强相的应用范畴及适用区别以及比较了金属基复合材料的不同制备方法,分析传统的制备方法之间的分类特点及应用方向,重点提出了工艺步骤灵活、可控性极高的新型制备石墨烯增强金属基复合材料的方法—激光增材制造技术。深入讨论了石墨烯及其衍生物作为增强相,给金属基复合材料中带来的力学、摩擦学、电学、金属耐腐蚀等性能方面的改变,比较了石墨烯及衍生物作为增强相对铝、镁、镍、铜、钛等金属基复合材料性能提高及改善程度和在不同金属基复合材料中仍存在的增强相各种团聚、分散问题与金属基体的界面结合等及目前提出的处理方案,最后提出制备石墨烯金属基复合材料未来发展方向及新型制备技术仍存在的实际问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号