首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
发泡剂种类对泡沫混凝土浇筑稳定性影响较大。采用建筑石膏作为胶凝材料易出现浆体结块,浆体硬化后贯穿性裂缝较多,密度达到360kg/m3时,28d抗压强度只有0.13MPa,不能满足设计要求。采用纯P.O42.5级水泥作为胶凝材料时,浆体出现塌模,通过掺入5%的早强组分(ZQ)和15%II级粉煤灰取代水泥,0.5%早强型FDN减水剂,1kg粉料泡沫掺量为6L,水胶比为0.38,制备的泡沫混凝土浇筑稳定性好,干密度为245kg/m3,28d抗压强度达到0.18MPa,导热系数为0.0645W/(m.K),符合设计要求。  相似文献   

2.
《混凝土》2015,(8)
研究了碱激发环境下矿渣替代水泥制备泡沫混凝土的方案。结果表明,激发剂水玻璃模数选择n=1.2,提高矿渣替代水泥的比例能有效提高泡沫混凝土的抗压强度,取代比例可以达到为100%,制品密度为600 kgm3,28 d抗压强度为6.5 MPa,导热系数为0.178 W(m·K),收缩为0.87 mm/m。同时,试验还研究了掺入超轻陶粒或者聚丙烯酸钠盐SAP作为内养护材料对泡沫混凝土性能的影响,发现二者都能有效降低导热系数和收缩,掺入陶粒时能提高制品的强度,而掺入SAP会降低制品的强度。最终复掺陶粒和SAP对泡沫混凝土进行改性,制品性能:密度为600 kgm3,28 d抗压强度为5.5 MPa,导热系数为0.142 W(m·K),收缩为0.45 mmm,总体性能良好。  相似文献   

3.
分别以水泥、气凝胶为胶凝材料和填充材料,采用机械发泡法制备了新型高性能气凝胶泡沫混凝土。研究了气凝胶含量对泡沫混凝土干表观密度、导热系数、吸水率及抗压强度的影响,表征了气凝胶泡沫混凝土孔结构及孔径分布。结果表明,气凝胶泡沫混凝土的密度和导热系数明显低于普通泡沫混凝土,体积吸水率也显著降低,当气凝胶体积含量为20%时,气凝胶泡沫混凝土的密度从719 kg/m~3降低至512 kg/m~3,导热系数从0.188 W/(m·K)降低至0.121 W/(m·K),体积吸水率从37.3%降低至32.2%,抗压强度虽有所降低,但仍符合JG/T 266—2011《泡沫混凝土》的强度要求。  相似文献   

4.
《砖瓦》2017,(10)
利用污泥陶粒作为粗骨料制备轻骨料混凝土,改变水灰比和水泥用量,对污泥轻骨料混凝土的制备和性能进行研究。试验结果表明,水灰比为0.45,单方水泥用量280kg,制备的混凝土干坍落度138mm,表观密度1420kg/m~3,28d抗压强度10.6MPa,导热系数0.35W/(m·K),能够达到轻骨料混凝土LC15的性能要求。  相似文献   

5.
以免煅烧脱硫石膏-粉煤灰-矿粉复合胶凝材料为基材,将废弃泡沫玻璃边角料、玻化微珠等保温材料作为轻质骨料掺入,制备保温材料。测试了保温材料的干表观密度、立方体抗压强度、导热系数等性能指标,并通过SEM进行界面微观形貌观察。结果表明:所制备保温材料的干表观密度最小可达到410kg/m~3,立方体抗压强度均达到0.5MPa以上,导热系数在0.06~0.09W/(m·K)之间,均满足现行标准要求。  相似文献   

6.
随着建筑的拆迁与重建,废弃泡沫混凝土将大量产生。针对这一点,提出了废料高效再生利用的技术路线和方法。将粉碎后的废料经过煅烧粉磨,制备得到可再次水化的再生胶凝材料。在矿渣碱激发的体系下用此再生材料制备泡沫混凝土。试验结果表明,煅烧温度设置在650℃附近时可得到优秀的再生胶凝材料,可完全替代水泥组分制备泡沫混凝土,成品密度为600 kg/m~3,28d抗压强度为4.3MPa,导热系数为0.155 W/(m·K),收缩为0.48 mm/m,冻融质量损失为2.8%,冻融强度损失为4.5%。  相似文献   

7.
以建筑垃圾、普通水泥、废泡沫塑料(EPS)和发泡剂为原料制备泡沫混凝土,研究了建筑垃圾用量对泡沫混凝土抗压强度、干表观密度和导热系数等物理性能的影响.结果表明,采用激发剂的情况下,建筑垃圾用量达到70%(质量百分数),可以制得干表观密度为860 kg/m3、28 d抗压强度大于3 MPa、导热系数小于0.20 W/(m·K)的泡沫混凝土,可作为非承重围护结构的保温材料使用.  相似文献   

8.
以P·O42.5水泥、超细矿渣粉、粉煤灰为胶凝材料,采用化学发泡法制备密度等级为160 kg/m~3的超轻泡沫混凝土。通过对促凝剂的复配优化、粉煤灰掺量、增稠剂用量的实验研究,对超轻泡沫混凝土性能进行优化。实验结果表明:优化复合促凝剂SAA用量为1.5%、粉煤灰掺量10%、增稠剂掺量0.05%时,泡沫混凝土的干密度为158.8 kg/m~3,28 d抗压强度为0.46 MPa,气孔均匀细小,直径在1 mm以下的气孔占总气孔数的98%以上,导热系数为0.05 W/(m·K)。并利用ANSYS Workbench对泡沫混凝土外墙保温系统进行模拟热分析,表明优化后的超轻泡沫混凝土的保温性能能很好地满足外墙保温的要求。  相似文献   

9.
利用硅酸盐水泥和超细矿渣粉,采用化学发泡方法制备高性能、低密度的泡沫混凝土.探讨了超细矿渣粉的添加对泡沫混凝土制备和性能的影响.结果表明,当超细矿渣粉用量为水泥质量的20%,水胶比为0.48时,可以制得干密度为300 kg/m3的低密度泡沫混凝土,其导热系数为0.060 W/(m·K),28 d抗压强度达1.04 MPa.  相似文献   

10.
本文以碱激发偏高岭土为胶凝材料,采用物理发泡的方法,制备了500~1400kg/m3、3d抗压强度为1.5~30.8MPa偏高岭土基地聚合物泡沫混凝土。首先采用正交试验分析碱含量、水料比,水玻璃模数对偏高岭土基地聚合物抗压强度的影响,优化胶凝材料配合比。再使用石灰调节凝结时间,并主要研究了泡沫剂种类、泡沫体积掺量等对泡沫混凝土性能的影响。其中,密度等级为700kg/m3偏高岭土基地聚合物泡沫混凝土导热系数仅为0.105W/(m·K),抗压强度可达2.44±0.39MPa,与同密度等级的泡沫混凝土相比,具有更好的保温隔热性能。  相似文献   

11.
基于碱激发-磷渣胶凝体系,研究了激发剂、水胶比、矿物掺合料、活性MgO对净浆凝结时间及强度的影响,并根据正交试验结合数理统计的方法,探讨了各因素对湿密度为200 kg/m~3的超轻质泡沫混凝土性能影响的显著水平,确定了泡沫混凝土的最优配比。经过重现试验,泡沫混凝土的干密度为150 kg/m~3左右时,28 d抗压强度可达0.34 MPa,吸水率为48%,导热系数为0.044W/(m·K)。  相似文献   

12.
以水泥、植物蛋白发泡剂、粉煤灰为原料,掺加经过预湿处理的漂珠、玻化微珠,采用物理发泡法制备800 kg/m~3级泡沫混凝土。采用SEM及图像分析软件对试样孔形进行表征,探讨了漂珠、玻化微珠对泡沫混凝土孔结构及性能的影响。结果表明:掺入适量玻化微珠和漂珠能增大水泥浆的流动度,减小其干缩率。掺10.0%体积玻化微珠的泡沫混凝土28 d抗压强度为8.81 MPa,导热系数为0.2027 W/(m·K);掺10.0%体积漂珠的泡沫混凝土28 d抗压强度达9.36 MPa,导热系数为0.2041 W/(m·K)。  相似文献   

13.
以生土作为填料,制备了生土泡沫混凝土.试验研究了生土泡沫混凝土的干表观密度、抗压强度、导热系数、孔隙分布和吸湿特性,探讨了微硅粉对生土泡沫混凝土抗压强度和导热系数的影响.结果表明:生土泡沫混凝土干表观密度、抗压强度和导热系数均随着泡沫掺量(体积分数)的增大而减小;随微硅粉掺量(质量分数)增大,生土泡沫混凝土抗压强度和保温隔热性能同时得到改善.利用生土作填料,同时掺加20%微硅粉,可以制备出干表观密度、抗压强度和导热系数分别为790kg/m3,7.8MPa及0.156W/(m·K)的性能优异的生土泡沫混凝土(泡沫掺量为60%).泡沫掺量75%的生土泡沫混凝土(未掺微硅粉)的纳米级孔隙量低,吸湿能力小.  相似文献   

14.
采用陶瓷砖抛光泥作为硅质组分,研究其掺量对陶瓷砖抛光泥蒸压加气混凝土砌块性能的影响,通过浆体发气曲线研究了陶瓷砖抛光泥掺量对浆体体积稳定性的影响,利用抗压强度、干密度、干燥收缩值和导热系数对其主要物理性能进行了评定,采用SEM测试手段,研究了蒸压加气混凝土砌块的微观结构。结果表明:当陶瓷砖抛光泥掺量为60%~72%时,浆体的体积稳定性较好;蒸压加气混凝土砌块的抗压强度为3.6MPa~4.2MPa,干密度为466kg/m3~512kg/m3,干燥收缩值0.31mm/m~0.35mm/m,导热系数为0.095W/(m·K)~0.110W/(m·K);制品为C-S-H凝胶、托贝莫来石和水化石榴子石晶体等水化产物互相交织形成空间网络结构。  相似文献   

15.
以锆硅渣为掺合料、普通硅酸盐水泥为主要胶凝材料,双氧水为发泡剂制备了发泡水泥。通过水泥胶砂强度和净浆流动度试验,研究了锆硅渣的最佳煅烧温度和适宜掺量。同时,对锆硅渣发泡水泥的性能及孔结构进行了探究。结果表明,锆硅渣最佳煅烧温度为450℃,掺量为5%,双氧水用量为3.6%时,制备的锆硅渣发泡水泥制品干密度为450kg/m~3,7d抗压强度为3.6MPa,28d抗压强度为4.2MPa,导热系数为0.0903W/(m·K),均达到蒸压加气混凝土砌块同密度等级优等品的技术指标要求。  相似文献   

16.
陶瓷微珠具有质轻、导热系数低的特点,目前主要应用于建筑反射隔热涂料中,采用热线法导热系数仪测试其导热系数为0.0350W/(m·K),比玻化微珠和膨胀珍珠岩导热系数低20%~30%,干密度为78kg/m~3,有利于制备轻质高强、保温性能好的保温砂浆。为降低保温砂浆的导热系数,通过复掺少量陶瓷微珠和聚苯颗粒,制备的保温砂浆的干密度为228kg/m~3,28d抗压强度为0.4MPa,导热系数为0.060W/(m·K),除干密度稍偏高外,其它主要性能指标满足GB/T 10303—2001《膨胀珍珠岩绝热制品》中200号优等品标准要求。  相似文献   

17.
以H_2O_2为发泡剂,以建筑垃圾、矿渣等为原料制备地聚合物基泡沫混凝土。考察建筑垃圾/矿渣质量比、碱激发剂用量、H_2O_2用量等因素对泡沫混凝土干密度、抗压强度和导热系数等性能的影响。结果表明,当建筑垃圾和矿渣质量比为5:7,碱激发剂用量为15%,H_2O_2用量为5%时,泡沫混凝土的综合性能最佳,干密度为298 kg/m~3,抗压强度为1.26 MPa,导热系数为0.075 W/(m·K)。  相似文献   

18.
以生土、水泥、聚羧酸减水剂及自制微生物发泡剂为原材料,采用先预制气泡再与水泥浆体混合的方法,制备了不同密度等级的生土泡沫混凝土,研究了泡沫掺量对生土泡沫混凝土干密度、抗压强度、导热系数、吸水率及其孔结构的影响.结果表明:当水泥用量为128.4~583.4 kg/m^(3),生土用量为64.2~291.7 kg/m^(3),减水剂用量为0.6~3.0 kg/m^(3),泡沫掺量为固体材料总质量的6.1%~26.4%时,制成了300~1200 kg/m^(3)密度等级的生土泡沫混凝土,其抗压强度为0.8~10.3 MPa,导热系数为0.08~0.27 W/(m·K),吸水率为6.5%~67.7%,满足泡沫混凝土的相关性能要求.  相似文献   

19.
利用工业废弃物粉煤灰中的漂珠(FACs)、P·O42.5R水泥、植物蛋白发泡剂和电厂粉煤灰为原料,采用物理发泡法制备500 kg/m~3的泡沫混凝土。运用流变仪、SEM、XRD等测试方法及图像分析软件对试样气孔结构及分布进行表征,并探讨了FACs对浆体工作性、泡沫混凝土的强度及导热系数的影响。结果表明:掺2.8%FACs时的泡沫混凝土试样小于400μm孔的气孔比例为94.94%,气孔平均直径为174.39μm,28 d抗压强度达到3.38 MPa,导热系数为0.1117 W/(m·K);过量的FACs(2.8%)会使硬化泡沫混凝土小于50μm的气孔增加,并增加开口孔隙率;掺3.5%FACs的泡沫混凝土试样28 d抗压强度为2.87 MPa,导热系数为0.1079 W/(m·K)。  相似文献   

20.
采用天然火山渣经磨细处理后得到的火山灰和水泥作为胶凝材料,通过化学发泡的方法,制备了700级大掺量火山灰发泡混凝土,研究了不同组成和养护条件对火山灰泡沫混凝土的成型状态、干密度及抗压强度的影响。结果表明,当胶凝材料总量为700 g(火山灰占70%)、水胶比为0.3、早强剂(CaCl_2)掺量为1.8%、稳泡剂(硬脂酸钙)掺量为0.6%、H_2O_2掺量为1.5%,减水剂掺量为0.2%,并在85℃条件下蒸养24 h时,制备出的700级大掺量火山灰泡沫混凝土性能最佳,其成型状态良好、干密度为650 kg/m~3、抗压强度为6.6 MPa、导热系数为0.144 3 W/(m·K)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号