首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Ti-based metal organic compound is taken as the precursor to be decomposed in NH3 flow at a certain temperature to prepare modified TiO2 with high photocatalytic activity under visible-light irradiation. The processes of doping and crystallization of TiO2 are conducted at the same time during the treatment in the NH3 flow. This approach could efficiently dope N into anatase TiO2 lattice. The prepared TiO2 also has well-defined mesoporosity with a BET area of 217 m2/g.  相似文献   

2.
Giant dielectric permittivity (ε′) with low loss tangent (tanδ) was reported in (In + Nb) co‐doped TiO2 ceramics. Either of electron‐pinned defect‐dipole or internal barrier layer capacitor model was proposed to be the origin of this high dielectric performance. Here, we proposed an effectively alternative route for designing low‐tanδ in co‐doped TiO2 ceramics by creating a resistive outer surface layer. A pure rutile‐TiO2 phase with a dense microstructure and homogeneous dispersion of dopants was achieved in (In + Nb) co‐doped TiO2 ceramics prepared by a simple sol‐gel method. Two giant dielectric responses were observed in low‐ and high‐frequency ranges, corresponding to extremely high ε′≈106‐107 and large ε′≈104‐105, respectively. After annealing in air, a low‐frequency dielectric response disappeared and could be restored by removing the outer surface of the annealed sample, indicating the dominant electrode effect in the initial sample. Annealing can cause improved dielectric properties with a temperature‐ and frequency‐independent ε′ value of ≈1.9 × 104 and cause a decrease in tanδ from 0.1 to 0.035. High dielectric performance in (In0.5Nb0.5)xTi1?xO2 ceramics can be achieved by eliminating the electrode effect and forming a resistive outer surface layer.  相似文献   

3.
The crystallization of fluoride nanocrystals (NCs) in chemically and mechanically stable aluminosilicate glasses has shown interesting optical properties even for small crystal fractions (10-15 wt%). When rare-earth (RE) ions are used as dopants, crystal-like features can be reproduced and an increase in the emission and/or energy transfer processes, with respect to the starting glasses, is observed. A crucial point for these materials is the study of the local surrounding of RE ions and their incorporation in the NCs. In fact, the effective concentration in the NCs can be much higher than the nominal concentration, up to one order of magnitude or even higher. The knowledge of RE ions incorporation in the NCs permits choosing proper doping levels to optimize both linear and nonlinear optical properties. In this work, transparent oxyfluoride glass-ceramics with LaF3 NCs, doped with Nd3+ and Er3+ using oxide and fluoride precursors, were prepared using the melt-quenching method and controlled crystallization. The local surrounding of the RE ions was studied using X-ray absorption spectroscopy, electron paramagnetic resonance and photoluminiscence. The results show that most RE ions are already in a fluorine-rich amorphous environment even in the initial glass. The crystallization process provokes the RE ion redistribution and incorporation in the fluoride NCs. The different RE precursors, used as oxides or fluorides, have an influence on the incorporation of the RE in the NCs and, as a consequence, on the final optical properties.  相似文献   

4.
Changes in the microstructure and dielectric properties with the variation of the donor/acceptor ratio in BaTiO3 ceramics were investigated. In donor-rich specimens, a liquid that appeared during sintering did not penetrate into grain boundaries. However, in the acceptor-rich specimens, the grains were separated by a liquid film during sintering. The much higher mobility of the liquid film than that of the grain boundaries was suggested to cause extensive grain growth in acceptor-rich BaTiO3. The macroscopic homogenization of dopants because of grain growth in acceptor-rich specimens resulted in changes in the dielectric properties.  相似文献   

5.
A series of Mg2+/Er3+‐codoped congruent LiNbO3 crystals were grown by Czochralski method from the growth melts containing 0.5 mol% Er2O3 while varied MgO content from 0.0 to 7.0 mol%. The unclamped electro‐optic coefficients γ13 and γ33 of these crystals were measured by Mach–Zehnder interferometry. Two different voltage‐applying schemes were adopted: one is the DC voltage applied to the crystal via Al films coated onto crystal surfaces and another is via a pair of external Cu slab electrodes. The coefficients measured by the two schemes show similar strong dependence on Mg2+ concentration. The dependence is non‐monotonous, dramatic, and unusual, and reveals the features of two Mg2+ concentration thresholds of optical damage: one in the Mg2+ concentration range of 1.2–2.0 mol% (in crystal) and another in 4.5–5.0 mol%. Around the threshold the electro‐optic coefficient decreases abruptly at first and then recovers quickly, and the coefficient drops by >20% (12%) at the first (second) threshold, which exceeds the error 3% considerably. The dramatic behavior is qualitatively explained on the basis of the EO coefficient model of LiNbO3 and the defect structure model for Mg2+‐doped LiNbO3.  相似文献   

6.
White pigments impart opacity to films and coatings by virtue of their ability to scatter incident light. This study considers a homogeneous coating that contains a low concentration of randomly dispersed, monodisperse pigment particles. The optical properties are determined using a lattice model with cell size defined by the diameter ( d ) of the particles. For pure scattering, the contrast ratio (CR) is an algebraic function of the scattering coefficient (κ), pigment volume fraction (φ), and coating layer thickness ( L ), as follows: [formula omitted]When tested against literature data for white films opacified with titanium dioxide, an empirical expression with a single adjustable constant provides a better interpolation formula than the above equation. This discrepancy is attributed to the contribution of a minor amount of absorption to the measured opacity.  相似文献   

7.
The dielectric properties of (Ba0.6Sr0.4)TiO3 and Al2O3-doped (Ba0.6Sr0.4)TiO3 have been characterized. The grain size of the specimen is maximum for (Ba0.6Sr0.4)TiO3 that has been doped with 1 wt% Al2O3. The density and the real part of the relative dielectric constant each decrease as the Al2O3 content increases. The loss factor is minimum for (Ba0.6Sr0.4)TiO3 that has been doped with 2 wt% Al2O3. The dielectric constant of the specimens decreases as the applied dc field increases. The influence of the dc field on the loss factor is much less than that on the dielectric constant. The tunability is ∼24% for (Ba0.6Sr0.4)TiO3 that has been doped with 1 wt% Al2O3.  相似文献   

8.
The microwave dielectric properties of CaTi1− x (Al1/2Nb1/2) x O3 solid solutions (0.3 ≤ x ≤ 0.7) have been investigated. The sintered samples had perovskite structures similar to CaTiO3. The substitution of Ti4+ by Al3+/Nb5+ improved the quality factor Q of the sintered specimens. A small addition of Li3NbO4 (about 1 wt%) was found to be very effective for lowering sintering temperature of ceramics from 1450–1500° to 1300°C. The composition with x = 0.5 sintered at 1300°C for 5 h revealed excellent dielectric properties, namely, a dielectric constant (ɛr) of 48, a Q × f value of 32 100 GHz, and a temperature coefficient of the resonant frequency (τf) of −2 ppm/K. Li3NbO4 as a sintering additive had no harmful influence on τf of ceramics.  相似文献   

9.
The effects of different concentrations of Mn2+, Mg2+, Al3+, Fe3+, La3+, and Nb5+ on the dielectric and tunable properties of Ba0.6Sr0.4TiO3 ceramics were investigated. It was found that doping in small amounts with acceptor ions such as Mg2+, Fe3+, and Al3+ could meliorate the dielectric properties clearly. Decrease of dielectric loss was attributed to the formation of compensating defects originating from acceptor substitution. It was concluded that the tunability was linked to both the dielectric constant and the grain size. A higher figure of merit was obtained by doping the ceramics with smaller ions of Al and Fe, compared to Ti.  相似文献   

10.
(Copper, Nitrogen)-codoped titanium dioxide (TiO2) nanoparticles have been prepared via a sol–gel route, followed by heat treatment at an elevated temperature. Such (Cu, N)-codoped TiO2 nanoparticles showed a strong absorption in the visible region and a red shift in the band gap transition and exhibited an enhanced photocatalytic activity as compared with the pure, N-doped and Cu-doped TiO2 for xylenol orange decomposition.  相似文献   

11.
Local electronic excitations of Nb-doped BaTiO3 electroceramic were investigated using low-loss electron energy loss (EEL) spectroscopy with a transmission electron microscope. The variations in electronic structure of the BaTiO3 were monitored as a function of Nb content by using Kramers-Krönig analysis of the low-loss EEL spectra. We found that the valence state of Nb (+5) as compared with that of the Ti (+4) introduces changes in the valence and conduction band states of BaTi1− x Nb x O3 samples. The real part of the dielectric function, Re(1/ɛ), displays an increasingly less negative character with higher amounts of dopant and the valence plasmon exhibits "quasi-plasmon" characteristics with the addition of Nb (at 0.0–1.8 at.%). Further, the plasmon energy shifts (by about 0.5 eV) to higher values with Nb additions. Significant changes take place in oscillator strengths of excitations in local (nanometer-scale) regions of the perovskite samples. This investigation demonstrates a method to quantitatively assess electronic properties, at the submicrometer scale, of doped ceramics used in electronic and electrooptical applications.  相似文献   

12.
In this work, a small amount of CaO single dopant was adopted to realize the densification and microstructure control of fine grained YAG ceramic with excellent optical quality, by a simple solid‐state reaction and one‐step vacuum sintering method. Then, highly transparent YAG ceramics (T = 84.4% at 1064 nm) were obtained just after vacuum sintering at 1820°C for 8 hours. The average grain size was only 2.7 μm, when the total amount of CaO was as low as 0.045 wt%. The effect of CaO on the microstructural evolution and optical property of the as‐fabricated YAG ceramics was systematically investigated in detail. It was found that CaO dopant promoted both densification and grain growth of YAG ceramics when the sintering temperature was lower than 1660°C, however, it dramatically inhibited grain growth when the sintering temperature was further increased.  相似文献   

13.
Mn‐doped (Bi0.5Na0.5)0.94Ba0.06TiO3 (MnBNBT) thin films were prepared on SrRuO3 (SRO)‐coated (001) SrTiO3 (STO) single crystal substrates by pulsed laser deposition under different processing conditions. Structural characterization (i.e., XRD and TEM) confirms the epitaxial growth of STO/SRO/MnBNBT heterostructures. Through the judicious control of deposition temperature, the defect level within the films can be finely tuned. The MnBNBT thin film deposited at the optimized temperature exhibits superior ferroelectric and piezoelectric responses with remanent polarization Pr of 33.0 μC/cm2 and piezoelectric coefficient d33 of 120.0 ± 20 pm/V.  相似文献   

14.
We have studied the electrical properties and microstructure of fluorine-doped BaTiO3 ceramics. The samples were prepared using a classical ceramic technology that involved the calcination of intimately mixed powders of BaCO3, TiO2, and BaF2. When the samples were sintered in untreated ambient air, the fluorine from the sample reacted with water vapor and formed gaseous HF. To prevent this hydrolysis of the fluorine, we sintered the samples in dried air. The fluorine-doped BaTiO3 ceramics sintered in a dry atmosphere showed microstructures and electrical properties typical of donor-doped BaTiO3. The samples containing up to 0.3 mol% of fluorine were coarse-grained, semiconducting, and displayed a remarkable PTCR effect. In contrast, the samples with a higher fluorine concentration were fine grained and insulating. A SIMS elemental mapping of the samples showed that the fluorine was distributed throughout the microstructure of the semiconducting samples; however, the fluorine concentration was enriched at grain boundaries and in the BaTi2O5 intergranular phase.  相似文献   

15.
可见光响应型非金属掺杂TiO2的研究进展   总被引:11,自引:2,他引:11  
洪孝挺  王正鹏  陆峰  张军  蔡伟民 《化工进展》2004,23(10):1077-1080
综述了各种非金属(N、S、C、B)掺杂TiO2在可见光范围的响应,以及N和F共掺杂TiO2、N和La^3 共掺杂TiO2、B与Ni2O3复合的制备及其光催化性能的研究进展。  相似文献   

16.
Aluminum titanate (AT) ceramic materials doped with alkali feldspar ((Na0.6K0.4)AlSi3O8) have been prepared. These ceramics exhibited high sinterability, large resistance to thermal decomposition, and large flexure strength. The existence of liquid-phase feldspar at sintering temperatures promoted the formation of AT ceramics as the sintering agent. It was considered that silicon ions substituting for aluminum ions at the surface of AT crystal grains lowered the surface energy and hindered the diffusion of Ti4+ and Al3+, giving rise to the large resistance to thermal decomposition. As a result, doping with alkali feldspar was found to effectively improve the mechanical and thermal properties of AT ceramics.  相似文献   

17.
Nanocrystalline ZrO2, SnO2, and TiO2 were synthesized through a simple hydrolytic process based on the etherification of alcohols. The obtained products had good uniformity and were less aggregated than in other synthesis techniques. The synthesis of ZrO2 and SnO2 in this process was dependent mainly on the reaction temperature, whereas the morphologies of TiO2 exhibited a dependence on the alcohols used.  相似文献   

18.
(1− x )ZnNb2O6· x TiO2 ceramics were prepared using both anatase and rutile forms of TiO2. At a composition of x = 0.58, a mixture region of ixiolite (ZnTiNb2O8) and rutile was observed and the temperature coefficient of resonant frequency (τf) was ∼0 ppm/°C. We found that although ɛr and τf were comparable, the quality factor ( Q × f , Q ≈ 1/ tan δ, f = resonant frequency) of 0.42ZnNb2O6·0.58TiO2 prepared from anatase and rutile was 6000 and 29 000, respectively. The origin of the difference in Q × f of both samples was investigated by measuring electrical conductivity and by analysis of the anatase–rutile phase transition. The anatase-derived sample had higher conductivity, which was related to the reduction of Ti4+. It is suggested that the increase of dielectric loss originates from an increase in Ti3+ and oxygen vacancies due to an anatase–rutile phase transition.  相似文献   

19.
Super full dense (TbxY1?x)3Al5O12 (x=0.5‐1.0) ceramics with optical grade (pore‐free) were successfully produced by solid‐state reaction between Tb4O7 and Al2O3 raw powders. Transparent sintered bodies were obtained by sintering at 1720°C for 5 hours in vacuum furnace. By additional HIP treatment, optical scattering centers were effectively removed, and finally the optical quality of the sintered bodies was improved to optical grade. Optical loss of the obtained samples at 1064 nm was approximately 0.1%/cm, and optically inhomogeneous parts were not observed inside the materials. Gaussian mode laser beam quality was not deteriorated after passing through the sample. Transmitted wavefront distortion inspected by interferometry was as excellent as λ/12. Verdet constant increased with an increase of Tb content in the garnet composition. When x=1.0, the Verdet constant was 307, 196, and 60 rad T?1 m?1 for 532, 633, and 1064 nm, respectively, at each measuring wavelength. These values were about 1.5 times higher than that of the commercially available TGG (Tb3Ga3O12) crystal. Insertion loss of the produced (Tb0.6Y0.4)3Al5O12 and TAG ceramics at 1064 nm was 0.01 and 0.05 dB, respectively, and extinction ratio was 39.5 and 40.3 dB, respectively. These properties were superior to that of the commercial high‐quality TGG single crystal (insertion loss: 0.05 dB, extinction ratio: 35.0 dB).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号