首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper examines seven case histories of load tests on piles or drilled shafts under lateral load. Since the current design software to estimate lateral load resistance of deep foundations requires p-y curves. The first approach used was correlative whereby soil parameters determined from in situ tests [standard penetration test (SPT) and cone penetration test (CPT)] were used as input values for standard p-y curves. In the second approach p-y curves were calculated directly from the stress deformation data measured in dilatometer (DMT) and cone pressuremeter tests. The correlative evaluation revealed that, on the average, predictions based upon the SPT were conservative for all loading levels, and using parameters from the CPT best predicted field behavior. Typically, predictions were conservative, except at the maximum load. Since traditionally SPT and CPT correlation-based p-y curves are for “sands” or “clays,” this study suggests that silts, silty sands, and clayey sands should use cohesive p-y curves. For the directly calculated curves, DMT derived p-y curves predict well at low lateral loads, but at higher load levels the predictions become unconservative. p-y curves derived from pressuremeter tests predicted well for both “sands” and “clays” where pore pressures are not anticipated.  相似文献   

2.
Effects of Construction on Laterally Loaded Pile Groups   总被引:1,自引:0,他引:1  
Full-scale lateral load tests on a group of bored and a group of driven precast piles were carried out as part of a research project for the proposed high-speed rail system in Taiwan. Standard penetration tests, cone penetration tests (CPT), and Marchetti Dilatometer tests (DMT) were performed before the pile installation. The CPT and DMT were also conducted after pile installation. Numerical analyses of the laterally loaded piles were conducted using p-y curves derived from preconstruction and postconstruction DMT and by applying the concept of p multipliers. Comparisons between preconstruction and postconstruction CPT and DMT data and evaluation of the results of computations show that the installation of bored piles softened the surrounding soil, whereas the driven piles caused a densifying effect.  相似文献   

3.
Undrained Lateral Pile Response in Sloping Ground   总被引:1,自引:0,他引:1  
Three-dimensional finite element analyses were performed to study the behavior of piles in sloping ground under undrained lateral loading conditions. Piles of different diameter and length in sloping cohesive soils of different undrained shear strength and several ground slopes were considered. Based on the results of the finite element analyses, analytical formulations are derived for the ultimate load per unit length and the initial stiffness of hyperbolic p-y curves. New p-y criteria for static loading of piles in clay are proposed, which take into account the inclination of the slope and the adhesion of the pile-slope interface. These curves are used through a commercial subgrade reaction computer code to parametrically analyze the effect of slope inclination and pile adhesion on lateral displacements and bending moments. To validate the proposed p-y curves, a number of well documented lateral load tests are analyzed. Remarkable agreement is obtained between predicted and measured responses for a wide range of soil undrained shear strength and pile diameter, length, and stiffness.  相似文献   

4.
Wedge Failure Analysis of Soil Resistance on Laterally Loaded Piles in Clay   总被引:1,自引:0,他引:1  
A fundamental study of pile-soil systems subjected to lateral loads in clay soil was conducted by using experimental tests and a lateral load-transfer approach. The emphasis was on an improved wedge failure model developed by considering three-dimensional combination forces and a new hyperbolic p-y criterion. A framework for determining the p-y curve on the basis of both theoretical analysis and experimental load test results is proposed. The proposed p-y method is shown to be capable of predicting the behavior of a large-diameter pile under lateral loading. The proposed p-y curves with an improved wedge model are more appropriate and realistic for representing a pile-soil interaction for laterally loaded piles in clay than the existing p-y method.  相似文献   

5.
This paper presents results of full-scale lateral load tests of one single pile and three pile groups in Hong Kong. The test piles, which are embedded in superficial deposits and decomposed rocks, are 1.5 m in diameter and approximately 30 m long. The large-diameter bored pile groups consist of one two-pile group at 6 D (D = pile diameter) spacing and one two-pile and one three-pile group at 3 D spacing. This paper aims to investigate the nonlinear response of laterally loaded large-diameter bored pile groups and to study design parameters for large-diameter bored piles associated with the p-y method using a 3 D finite-element program, FLPIER. Predictions using soil parameters based on published correlations and back-analysis of the single-pile load test are compared. It is found that a simple hyperbolic representation of load-deflection curves provides an objective means to determine ultimate lateral load capacity, which is comparable with the calculated values based on Broms' theory. Lateral deflections of bored pile groups predicted using the values of the constant of horizontal subgrade reaction, suggested by Elson and obtained from back-analysis of the single pile load test, are generally in good agreement with the measurements, especially at low loads.  相似文献   

6.
Soil movements associated with slope instability induce shear forces and bending moments in stabilizing piles that vary with the buildup of passive pile resistance. For such free-field lateral soil movements, stress development along the pile element is a function of the relative displacement between the soil and the pile. To investigate the effects of relative soil-pile displacement on pile response, large-scale load tests were performed on relatively slender, drilled, composite pile elements (cementitious grout with centered steel reinforcing bar). The piles were installed through a shear box into stable soil and then loaded by lateral translation of the shear box. The load tests included two pile diameters (nominal 115 and 178?mm) and three cohesive soil types (loess, glacial till, and weathered shale). Instrumentation indicated the relative soil-pile displacements and the pile response to the loads that developed along the piles. Using the experimental results, an analysis approach was evaluated using soil p-y curves derived from laboratory undrained shear strength tests. The test piles and analyses helped characterize behavioral stages of the composite pile elements at loads up to pile section failure and also provided a unique dataset to evaluate the lateral response analysis method for its applicability to slender piles.  相似文献   

7.
Load Transfer Curves along Bored Piles Considering Modulus Degradation   总被引:1,自引:0,他引:1  
The load-transfer (or t-z) curve, which reflects the interaction between a pile and the surrounding soil, is important for evaluating the load-settlement response of a pile subjected to an axial load using the load-transfer method. Preferably, the nonlinear stress-strain behavior of the soil should be incorporated into the t-z curve. This paper presents a practical approach for the estimation of t-z curves along bored piles by considering the nonlinear elastic properties and modulus degradation characteristics of the soil. A method for evaluating the modulus degradation curve from the results of a pressuremeter test is proposed. The results of load tests on one instrumented bored pile in Piedmont residual soil in Atlanta and another in the residual soil of the Jurong Formation in Singapore provide verification of the validity of the proposed approach.  相似文献   

8.
Although most designers prefer the p-y curve method as compared to elastic continuum or finite-element analysis of laterally loaded pile behavior, the profession has reached a state where it is time that closer scrutiny be given to the traditional “Matlock-Reese” p-y curves used in the analysis. The traditional p-y curves were derived from a number of well-instrumented field tests that reflect a limited set of conditions. To consider these p-y curves as unique is questionable. As important as such curves have been to advancing the practice from elastic to nonlinear beam on elastic foundation analysis, such calibrated∕verified p-y curves reflect the specific field test conditions (particularly the pile properties) encountered. As presented in this paper, there are additional influences such as pile bending stiffness, pile cross-sectional shape, pile-head fixity, and pile-head embedment that have an effect on the resulting p-y curves. It is argued that strain wedge (SW) model formulation can be used to characterize such effects. SW model analysis predicts the response of laterally loaded piles and has shown very good agreement with actual field tests in sand, clay, and layered soils. The advantage of the SW model is that it is capable of taking into account the effect of changes in soil and pile properties on the resulting p-y curves.  相似文献   

9.
Pile jacking is a piling technique that provides a noise- and vibration-free environment in the construction site. To improve termination criteria for pile jacking and to better understand the behavior of jacked piles, two steel H piles were instrumented, installed at a weathered soil site, and load tested. A set of termination criteria was applied to the test piles, which includes a minimum blow count from the standard penetration test, a specified final jacking force, a minimum of four loading cycles at the final jack force, and a specified maximum rate of pile settlement at the final jacking force. The two test piles passed all required acceptance criteria. Punching shear failure occurred at the failure load for both piles and the shaft resistance consisted of approximately 80% of the pile capacity. Based on the results of field tests in Hong Kong and Guangdong and several centrifuge tests, a relation between the ratio of the pile capacity Pult to the final jacking force PJ and the pile slenderness ratio is established. The Pult/PJ ratio is larger than 1.0 for long piles but may be smaller than 1.0 for short piles. A regression equation is established to determine the final jacking force, which is suggested as a termination criterion for jacked piles. The final jacking force can be smaller than 2.5 times the design load for very long piles, but should be larger than 2.5 times the design load for piles shorter than 37 times the pile diameter.  相似文献   

10.
The load transfer behavior along bored piles is affected by details of pile construction particularly those imposing stress and moisture changes to the surrounding soils. An investigation involving moisture migration tests, in situ horizontal stress measurements, and borehole shear and pressuremeter tests shows clear effects of construction that lead to subsequent changes in soil properties. The construction of bored piles in Singapore and the region often involves casting of concrete either in unsupported “dry” boreholes or in “wet” boreholes filled with water. It is necessary to differentiate these two extreme construction conditions in bored pile design. Based on triaxial compression and pressuremeter tests on the residual soil of the Jurong Formation in Singapore, the variation of soil modulus with shear strain can be described by a hyperbolic function. A procedure is recommended for assessing the combined effect of stress relief and soaking on soil modulus by introducing a modulus reduction factor. Modulus degradation curves from pressuremeter tests with the borehole conditions properly simulated are found capable of producing load transfer curves that are comparable to those deduced in the field.  相似文献   

11.
Simplified Approach for the Seismic Response of a Pile Foundation   总被引:1,自引:0,他引:1  
Pseudostatic approaches for the seismic analysis of pile foundations are attractive for practicing engineers because they are simple when compared to difficult and more complex dynamic analyses. To evaluate the internal response of piles subjected to earthquake loading, a simplified approach based on the “p-y” subgrade reaction method has been developed. The method involves two main steps: first, a site response analysis is carried out to obtain the free-field ground displacements along the pile. Next, a static load analysis is carried out for the pile, subjected to the computed free-field ground displacements and the static loading at the pile head. A pseudostatic push over analysis is adopted to simulate the behavior of piles subjected to both lateral soil movements and static loadings at the pile head. The single pile or the pile group interact with the surrounding soil by means of hyperbolic p-y curves. The solution derived first for the single pile, was extended to the case of a pile group by empirical multipliers, which account for reduced resistance and stiffness due to pile-soil-pile interaction. Numerical results obtained by the proposed simplified approach were compared with experimental and numerical results reported in literature. It has been shown that this procedure can be used successfully for determining the response of a pile foundation to “inertial” loading caused by the lateral forces imposed on the superstructure and “kinematic” loading caused by the ground movements developed during an earthquake.  相似文献   

12.
Most of the current design methods for driven piles were developed for closed-ended pipe piles driven in either pure clay or clean sand. These methods are sometimes used for H piles as well, even though the axial load response of H piles is different from that of pipe piles. Furthermore, in reality, soil profiles often consist of multiple layers of soils that may contain sand, clay, silt or a mixture of these three particle sizes. Therefore, accurate prediction of the ultimate bearing capacity of H piles driven in a mixed soil is very challenging. In addition, although results of well documented load tests on pipe piles are available, the literature contains limited information on the design of H piles. Most of the current design methods for driven piles do not provide specific recommendations for H piles. In order to evaluate the static load response of an H pile, fully instrumented axial load tests were performed on an H pile (HP?310×110) driven into a multilayered soil profile consisting of soils composed of various amounts of clay, silt and sand. The base of the H pile was embedded in a very dense nonplastic silt layer overlying a clay layer. This paper presents the results of the laboratory tests performed to characterize the soil profile and of the pile load tests. It also compares the measured pile resistances with those predicted with soil property- and in situ test-based methods.  相似文献   

13.
This paper presents a kinematic analysis of a single pile embedded in a laterally spreading layered soil profile and discusses the relevancy of conventional analysis models to this load case. The research encompasses the creation of three-dimensional (3D) finite-element (FE) models using the OpenSees FE analysis platform. These models consider a single pile embedded in a layered soil continuum. Three reinforced concrete pile designs are considered. The piles are modeled using beam-column elements and fiber-section models. The soil continuum is modeled using brick elements and a Drucker-Prager constitutive model. The soil-pile interface is modeled using beam-solid contact elements. The FE models are used to evaluate the response of the soil-pile system to lateral spreading and two alternative lateral load cases. Through the computation of force density-displacement (p-y) curves representative of the soil response, the FE analysis (FEA) results are used to evaluate the adequacy of conventional p-y curve relationships in modeling lateral spreading. It is determined that traditional p-y curves are unsuitable for use in analyses where large pile deformations occur at depth.  相似文献   

14.
Tapered piles in comparison to cylindrical piles can be beneficial in terms of the load capacity. In this paper, estimation of the load capacity for tapered piles using cone penetration test (CPT) resistance was investigated. Fourteen calibration chamber load tests using different pile types and six CPTs were conducted under various soil conditions. From the calibration chamber test results, the total, base, and shaft load capacities were analyzed in terms of soil conditions and taper angle. To evaluate CPT-based load capacity of tapered piles, normalized base and shaft resistances were obtained from normalized unit load-settlement curves. Based on the normalized base and shaft resistances, design equations that can be used to evaluate the base and shaft resistances of tapered piles were proposed. The proposed method is valid for sands of medium to dense conditions, while it may result in unconservative predictions for loose sands. To check the accuracy of the proposed method, field load tests using both cylindrical and tapered piles were conducted and compared with the predictions using the proposed method. A simplified approach using an equivalent cylindrical pile was also investigated and compared.  相似文献   

15.
Cyclic Lateral Load Behavior of a Pile Cap and Backfill   总被引:1,自引:0,他引:1  
A series of static cyclic lateral load tests were performed on a full-scale 4×3 pile group driven into a cohesive soil profile. Twelve 324-mm steel pipe piles were attached to a concrete pile cap 5.18×3.05?m in plan and 1.12?m in height. Pile–soil–pile interaction and passive earth pressure provided lateral resistance. Seven lateral load tests were conducted in total; four tests with backfill compacted in front of the pile cap; two tests without backfill; and one test with a narrow trench between the pile cap and backfill soil. The formation of gaps around the piles at larger deflections reduced the pile–soil–pile interaction resulting in a degraded linear load versus deflection response that was very similar for the two tests without backfill and the trenched test. A typical nonlinear backbone curve was observed for the backfill tests. However, for deflections greater than 5 mm, the load-deflection behavior significantly changed from a concave down shape for the first cycle to a concave up shape for the second and subsequent cycles. The concave up shape continued to degrade with additional cycles past the second and typically became relatively constant after five to seven cycles. A gap formed between the backfill soil and the pile cap, which contributed to the load-deflection degradation. Crack patterns and sliding surfaces were consistent with that predicted by the log spiral theory. The results from this study indicate that passive resistance contributes considerably to the lateral resistance. However, with cyclic loading the passive force degrades significantly for deflections greater than 0.5% of the pile cap height.  相似文献   

16.
Load Testing of a Closed-Ended Pipe Pile Driven in Multilayered Soil   总被引:2,自引:0,他引:2  
Piles are often driven in multilayered soil profiles. The accurate prediction of the ultimate bearing capacity of piles driven in mixed soil is more challenging than that of piles driven in either clay or sand because the mechanical behavior of these soils is better known. In order to study the behavior of closed-ended pipe piles driven into multilayered soil profiles, fully instrumented static and dynamic axial load tests were performed on three piles. One of these piles was tested dynamically and statically. A second pile served as reaction pile in the static load test and was tested dynamically. A third pile was tested dynamically. The base of each pile was embedded slightly in a very dense nonplastic silt layer overlying a clay layer. In this paper, results of these pile load tests are presented, and the lessons learned from the interpretation of the test data are discussed. A comparison is made of the ultimate base and limit shaft resistances measured in the pile load tests with corresponding values predicted from in situ test-based and soil property-based design methods.  相似文献   

17.
Behavior of Axially Loaded Pile Groups Driven in Clayey Silt   总被引:2,自引:0,他引:2  
This paper presents a case history describing measurements made during the installation and load testing of groups of five, closely spaced, precast concrete piles in a soft clay-silt. The test results extend the presently limited set of reported high-quality data for pile groups at field scale and allow assessment of the reliability of existing numerical and analytical predictive approaches. Full scale maintained compression and tension load tests on groups as well as tests on single (reference) piles and an individual test on a pile within a pile group enable the effects of multiple pile installations and interaction between piles under load to be assessed. The results are compared with existing simple methods of pile group analysis and with other case histories reporting results on small pile groups. A simple expression to evaluate pile group stiffness efficiency is proposed.  相似文献   

18.
In this paper, a finite-element model is developed in which the nonlinear soil behavior is represented by a hyperbolic relation for static load condition and modified hyperbolic relation, which includes both degradation and gap for a cyclic load condition. Although batter piles are subjected to lateral load, the soil resistance is also governed by axial load, which is incorporated by considering the P-Δ moment and geometric stiffness matrix. By adopting the developed numerical model, static and cyclic load analyses are performed adopting an incremental-iterative procedure where the pile is idealized as beam elements and the soil as elastoplastic spring elements. The proposed numerical model is validated with published laboratory and field pile test results under both static and cyclic load conditions. This paper highlights the importance of the degradation factor and its influence on the soil resistance-displacement (p-y) curve, number of cycles of loading, and cyclic load response.  相似文献   

19.
The behavior of step tapered bored piles in sand, under static lateral loading, was examined by field tests at one site in Kuwait. A total of 14 bored piles including two instrumented piles were installed for lateral loading. The soil profile consists of medium dense sand with weak cementations and no groundwater was encountered in the boreholes. Laboratory tests were carried out to determine the basic soil characteristics and the strength parameters. Both the ultimate lateral capacity and the deflections at applied loads were examined. The results indicate increased lateral load carrying capacity and decreased deflections at different applied loads for the step tapered piles due to the enlargement or strengthening of the upper section of the piles. The advantages of using this type of pile is emphasized including the cost saving resulting from an economical design.  相似文献   

20.
Pile Spacing Effects on Lateral Pile Group Behavior: Analysis   总被引:1,自引:0,他引:1  
Using the results from three full-scale lateral pile group load tests in stiff clay with spacing ranging from 3.3 to 5.65, computer analyses were performed to back-calculate p multipliers. The p multipliers, which account for reduced resistance due to pile–soil–pile interaction, increased as pile spacing increased from 3.3 to 5.65 diameters. Extrapolation of the test results suggests that group reduction effects can be neglected for spacings greater than about 6.5 for leading row piles and 7–8 diameters for trailing row piles. Based on analysis of the full-scale test results, pile behavior can be grouped into three general categories, namely: (1) first or front row piles; (2) second row piles; and (3) third and higher row piles. p multiplier versus normalized pile spacing curves were developed for each category. The proposed curves yield p multipliers which are higher than those previously recommended by AASHTO in 2000, the US Army in 1993, and the US Navy in 1982 based on limited test data, but lower values than those proposed by Reese et al. in 1996 and Reese and Van Impe in 2001. The response (load versus deflection, maximum moment versus load, and bending moment versus depth) for each row of the pile groups computed using GROUP and Florida Pier generally correlated very well with measurements from the full-scale tests when the p multipliers developed from this test program were employed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号